Deradh-TryOn / app.py
Gopalag's picture
Update app.py
687edd4 verified
import argparse
import os
os.environ['CUDA_HOME'] = '/usr/local/cuda'
os.environ['PATH'] = os.environ['PATH'] + ':/usr/local/cuda/bin'
from datetime import datetime
import gradio as gr
import spaces
import numpy as np
import torch
from diffusers.image_processor import VaeImageProcessor
from huggingface_hub import snapshot_download
from PIL import Image
torch.jit.script = lambda f: f
from model.cloth_masker import AutoMasker, vis_mask
from model.pipeline import CatVTONPipeline
from utils import init_weight_dtype, resize_and_crop, resize_and_padding
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--base_model_path",
type=str,
default="booksforcharlie/stable-diffusion-inpainting",
help=(
"The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub."
),
)
parser.add_argument(
"--resume_path",
type=str,
default="zhengchong/CatVTON",
help=(
"The Path to the checkpoint of trained tryon model."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="resource/demo/output",
help="The output directory where the model predictions will be written.",
)
parser.add_argument(
"--width",
type=int,
default=768,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--height",
type=int,
default=1024,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--repaint",
action="store_true",
help="Whether to repaint the result image with the original background."
)
parser.add_argument(
"--allow_tf32",
action="store_true",
default=True,
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="bf16",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
def image_grid(imgs, rows, cols):
assert len(imgs) == rows * cols
w, h = imgs[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
args = parse_args()
repo_path = snapshot_download(repo_id=args.resume_path)
# Pipeline
pipeline = CatVTONPipeline(
base_ckpt=args.base_model_path,
attn_ckpt=repo_path,
attn_ckpt_version="mix",
weight_dtype=init_weight_dtype(args.mixed_precision),
use_tf32=args.allow_tf32,
device='cuda'
)
# AutoMasker
mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
automasker = AutoMasker(
densepose_ckpt=os.path.join(repo_path, "DensePose"),
schp_ckpt=os.path.join(repo_path, "SCHP"),
device='cuda',
)
@spaces.GPU(duration=120)
def submit_function(
person_image,
cloth_image,
cloth_type,
num_inference_steps,
guidance_scale,
seed,
show_type
):
# Check if layers exist and are not empty
if "layers" in person_image and person_image["layers"]:
person_image, mask = person_image["background"], person_image["layers"][0]
mask = Image.open(mask).convert("L")
if len(np.unique(np.array(mask))) == 1: # All mask values are the same (empty mask)
mask = None
else:
mask = np.array(mask)
mask[mask > 0] = 255 # Convert to binary mask (0 or 255)
mask = Image.fromarray(mask)
else:
person_image = person_image["background"]
mask = None # No mask is provided, it will be auto-generated
tmp_folder = args.output_dir
date_str = datetime.now().strftime("%Y%m%d%H%M%S")
result_save_path = os.path.join(tmp_folder, date_str[:8], date_str[8:] + ".png")
if not os.path.exists(os.path.join(tmp_folder, date_str[:8])):
os.makedirs(os.path.join(tmp_folder, date_str[:8]))
generator = None
if seed != -1:
generator = torch.Generator(device='cuda').manual_seed(seed)
person_image = Image.open(person_image).convert("RGB")
cloth_image = Image.open(cloth_image).convert("RGB")
person_image = resize_and_crop(person_image, (args.width, args.height))
cloth_image = resize_and_padding(cloth_image, (args.width, args.height))
# Process mask
if mask is not None:
mask = resize_and_crop(mask, (args.width, args.height))
else:
mask = automasker(
person_image,
cloth_type
)['mask']
mask = mask_processor.blur(mask, blur_factor=9)
# Inference
result_image = pipeline(
image=person_image,
condition_image=cloth_image,
mask=mask,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator
)[0]
# Post-process
masked_person = vis_mask(person_image, mask)
save_result_image = image_grid([person_image, masked_person, cloth_image, result_image], 1, 4)
save_result_image.save(result_save_path)
if show_type == "result only":
return result_image
else:
width, height = person_image.size
if show_type == "input & result":
condition_width = width // 2
conditions = image_grid([person_image, cloth_image], 2, 1)
else:
condition_width = width // 3
conditions = image_grid([person_image, masked_person, cloth_image], 3, 1)
conditions = conditions.resize((condition_width, height), Image.NEAREST)
new_result_image = Image.new("RGB", (width + condition_width + 5, height))
new_result_image.paste(conditions, (0, 0))
new_result_image.paste(result_image, (condition_width + 5, 0))
return new_result_image
def person_example_fn(image_path):
return image_path
HEADER = """
<h1 style="text-align: center;"> 🐈 CatVTON: Concatenation Is All You Need for Virtual Try-On with Diffusion Models </h1>
<div style="display: flex; justify-content: center; align-items: center;">
<a href="http://arxiv.org/abs/2407.15886" style="margin: 0 2px;">
<img src='https://img.shields.io/badge/arXiv-2407.15886-red?style=flat&logo=arXiv&logoColor=red' alt='arxiv'>
</a>
<a href='https://huggingface.co/zhengchong/CatVTON' style="margin: 0 2px;">
<img src='https://img.shields.io/badge/Hugging Face-ckpts-orange?style=flat&logo=HuggingFace&logoColor=orange' alt='huggingface'>
</a>
<a href="https://github.com/Zheng-Chong/CatVTON" style="margin: 0 2px;">
<img src='https://img.shields.io/badge/GitHub-Repo-blue?style=flat&logo=GitHub' alt='GitHub'>
</a>
<a href="http://120.76.142.206:8888" style="margin: 0 2px;">
<img src='https://img.shields.io/badge/Demo-Gradio-gold?style=flat&logo=Gradio&logoColor=red' alt='Demo'>
</a>
<a href="https://huggingface.co/spaces/zhengchong/CatVTON" style="margin: 0 2px;">
<img src='https://img.shields.io/badge/Space-ZeroGPU-orange?style=flat&logo=Gradio&logoColor=red' alt='Demo'>
</a>
<a href='https://zheng-chong.github.io/CatVTON/' style="margin: 0 2px;">
<img src='https://img.shields.io/badge/Webpage-Project-silver?style=flat&logo=&logoColor=orange' alt='webpage'>
</a>
<a href="https://github.com/Zheng-Chong/CatVTON/LICENCE" style="margin: 0 2px;">
<img src='https://img.shields.io/badge/License-CC BY--NC--SA--4.0-lightgreen?style=flat&logo=Lisence' alt='License'>
</a>
</div>
<br>
· This demo and our weights are only for Non-commercial Use. <br>
· You can try CatVTON in our <a href="https://huggingface.co/spaces/zhengchong/CatVTON">HuggingFace Space</a> or our <a href="http://120.76.142.206:8888">online demo</a> (run on 3090). <br>
· Thanks to <a href="https://huggingface.co/zero-gpu-explorers">ZeroGPU</a> for providing A100 for our <a href="https://huggingface.co/spaces/zhengchong/CatVTON">HuggingFace Space</a>. <br>
· SafetyChecker is set to filter NSFW content, but it may block normal results too. Please adjust the <span>`seed`</span> for normal outcomes.<br>
"""
def app_gradio():
custom_css = """
@media (max-width: 768px) {
.gr-column {
width: 100% !important;
padding: 0.5rem;
}
.gr-row {
flex-direction: column !important;
}
.container {
margin: 0.5rem !important;
padding: 1rem !important;
}
button.primary-btn {
padding: 0.8rem 1rem;
font-size: 1rem;
}
}
@media (max-width: 480px) {
.gr-slider, .gr-radio-group, .gr-markdown, .gr-accordion {
font-size: 0.9rem !important;
padding: 0.5rem;
}
button.primary-btn {
font-size: 0.8rem;
padding: 0.6rem 0.8rem;
}
.gr-form {
margin: 0.5rem;
}
}
button.primary-btn {
background: linear-gradient(135deg, #2541b2 0%, #1a237e 100%);
transition: all 0.3s ease;
border: none;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
color: white !important;
}
button.primary-btn:hover {
transform: translateY(-2px);
box-shadow: 0 4px 8px rgba(0,0,0,0.2);
}
.gr-button {
background: linear-gradient(135deg, #2541b2 0%, #1a237e 100%);
color: white !important;
border: none;
transition: all 0.3s ease;
}
.gr-button:hover {
opacity: 0.9;
transform: translateY(-2px);
}
body {
background: linear-gradient(135deg, #f8f9fa 0%, #e8eaf6 100%);
}
.container {
border-radius: 12px;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
}
.gr-form {
border-radius: 8px;
background: white;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
}
.gr-radio-group {
background: white;
padding: 12px;
border-radius: 8px;
}
.gr-accordion {
border-radius: 8px;
overflow: hidden;
}
/* Force white text in buttons */
button.primary-btn span {
color: white !important;
}
.gr-button span {
color: white !important;
}
"""
with gr.Blocks(title="Deradh Virtual Try-On", css=custom_css) as demo:
gr.Markdown(
"""
<div style="text-align: center; background: linear-gradient(135deg, #2541b2 0%, #1a237e 100%); padding: 2.5rem; color: white; border-radius: 0 0 20px 20px; margin-bottom: 2rem; box-shadow: 0 4px 6px rgba(0,0,0,0.1);">
<h1 style="color: white; font-size: 2.5rem; font-weight: 600; margin-bottom: 1rem;">Deradh Virtual Try-On Experience</h1>
<div style="margin: 1rem 0;">
<a href="https://deradh.com" style="color: white; text-decoration: none; padding: 0.5rem 1rem; border: 2px solid white; border-radius: 25px; transition: all 0.3s ease;">
Visit Deradh.com
</a>
</div>
</div>
<div style="text-align: center; padding: 1rem; color: #6ed7fe; font-size: 1.2rem; font-weight: 500; margin-bottom: 2rem;">
Experience the future of fashion with our AI-powered virtual try-on technology
</div>
"""
)
with gr.Row():
with gr.Column(scale=1, min_width="auto"):
with gr.Row():
image_path = gr.Image(
type="filepath",
interactive=True,
visible=False,
)
person_image = gr.ImageEditor(
interactive=True,
label="Upload Your Photo",
type="filepath"
)
with gr.Row():
with gr.Column(scale=1, min_width="auto"):
cloth_image = gr.Image(
interactive=True,
label="Select Garment",
type="filepath"
)
with gr.Column(scale=1, min_width="auto"):
gr.Markdown(
'''
<div style="color: white; background: linear-gradient(135deg, #2541b2 0%, #1a237e 100%);
padding: 1.2rem; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
<h3 style="margin: 0 0 0.8rem 0; color: white;">Mask Options:</h3>
<ol style="margin: 0; padding-left: 1.2rem;">
<li>Auto-generated mask will be formed based on garment type</li>
</ol>
</div>
'''
)
cloth_type = gr.Radio(
label="Garment Type",
choices=["upper", "lower", "overall"],
value="upper",
)
submit = gr.Button("Try On", elem_classes="primary-btn")
gr.Markdown(
'''
<div style="text-align: center; color: #1a237e; font-weight: 500; margin: 1rem 0;
padding: 0.8rem; background: white; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.05);">
Important: Please wait after clicking Try On - Processing may take a moment
</div>
'''
)
# gr.Markdown(
# '''
# <div style="background: linear-gradient(135deg, #2541b2 0%, #1a237e 100%);
# color: white; padding: 1.2rem; border-radius: 8px; margin-top: 1rem;
# box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
# <h3 style="margin: 0 0 0.8rem 0; color: white;">Advanced Settings:</h3>
# <ul style="margin: 0; padding-left: 1.2rem;">
# <li>Increase Steps for higher quality</li>
# <li>Adjust CFG for color intensity</li>
# <li>Change Seed for different variations</li>
# </ul>
# </div>
# '''
# )
with gr.Accordion("Developer Options", open=False):
num_inference_steps = gr.Slider(
label="Quality Steps",
minimum=10,
maximum=100,
step=5,
value=50
)
guidance_scale = gr.Slider(
label="Style Intensity",
minimum=0.0,
maximum=7.5,
step=0.5,
value=2.5
)
seed = gr.Slider(
label="Variation Seed",
minimum=-1,
maximum=10000,
step=1,
value=42
)
show_type = gr.Radio(
label="Display Options",
choices=["result only", "input & result", "input & mask & result"],
value="input & result",
)
with gr.Column(scale=2, min_width="auto"):
result_image = gr.Image(
interactive=False,
label="Virtual Try-On Result"
)
with gr.Row():
root_path = "resource/demo/example"
with gr.Column():
men_exm = gr.Examples(
examples=[
os.path.join(root_path, "person", "men", _)
for _ in os.listdir(os.path.join(root_path, "person", "men"))
],
examples_per_page=4,
inputs=image_path,
label="Sample Photos - Men",
)
women_exm = gr.Examples(
examples=[
os.path.join(root_path, "person", "women", _)
for _ in os.listdir(os.path.join(root_path, "person", "women"))
],
examples_per_page=4,
inputs=image_path,
label="Sample Photos - Women",
)
with gr.Column():
condition_upper_exm = gr.Examples(
examples=[
os.path.join(root_path, "condition", "upper", _)
for _ in os.listdir(os.path.join(root_path, "condition", "upper"))
],
examples_per_page=4,
inputs=cloth_image,
label="Sample Upper Garments",
)
condition_overall_exm = gr.Examples(
examples=[
os.path.join(root_path, "condition", "overall", _)
for _ in os.listdir(os.path.join(root_path, "condition", "overall"))
],
examples_per_page=4,
inputs=cloth_image,
label="Sample Full Outfits",
)
condition_person_exm = gr.Examples(
examples=[
os.path.join(root_path, "condition", "person", _)
for _ in os.listdir(os.path.join(root_path, "condition", "person"))
],
examples_per_page=4,
inputs=cloth_image,
label="Style Reference Photos",
)
image_path.change(
person_example_fn,
inputs=image_path,
outputs=person_image
)
submit.click(
submit_function,
[
person_image,
cloth_image,
cloth_type,
num_inference_steps,
guidance_scale,
seed,
show_type,
],
result_image,
)
demo.queue().launch(share=True, show_error=True)
if __name__ == "__main__":
app_gradio()