Spaces:
Runtime error
Runtime error
File size: 10,071 Bytes
4ba4a77 a199795 db9e998 71c9215 4ba4a77 97d7261 a199795 97d7261 455ee26 a199795 ea2cadc a199795 ea2cadc a199795 db9e998 a199795 ea2cadc b507883 3a10092 8a63757 3a10092 b507883 a199795 05e2529 a199795 2443dec 3a10092 2443dec 3a10092 ef27278 a199795 b07867d a199795 2443dec 3a10092 3fc83f7 3a10092 3fc83f7 3a10092 3fc83f7 2443dec 3a10092 3fc83f7 3a10092 3fc83f7 2443dec a199795 3fc83f7 2443dec 8a63757 364b55a 7c51106 a199795 3fc97a9 db9e998 686b10f a199795 686b10f a199795 001f520 a199795 05e2529 686b10f ef27278 a199795 2443dec 3a10092 2443dec 3a10092 a199795 3a10092 b42b0f4 a199795 05e2529 a199795 ef27278 a199795 686b10f a199795 38df701 686b10f a199795 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import requests
import random
import time
import pandas as pd
import gradio as gr
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
import torch
def read3(num_selected_former):
fname = 'data3_convai2_inferred.txt'
with open(fname, encoding='utf-8') as f:
content = f.readlines()
index_selected = random.randint(0,len(content)/2-1)
while index_selected == num_selected_former:
index_selected = random.randint(0,len(content)/2-1)
text = eval(content[index_selected*2])
interpretation = eval(content[int(index_selected*2+1)])
min_len = 5
while len(text['text'].split(' ')) <= min_len or '\\' in text['text'] or '//' in text['text']:
index_selected = random.randint(0,len(content)/2-1)
text = eval(content[int(index_selected*2)])
res_tmp = [(i, 0) for i in text['text'].split(' ')]
res = {"original": text['text'], "interpretation": res_tmp}
return res, index_selected
def func3(num_selected, human_predict, num1, num2, user_important):
chatbot = []
# num1: Human score; num2: AI score
fname = 'data3_convai2_inferred.txt'
with open(fname) as f:
content = f.readlines()
text = eval(content[int(num_selected*2)])
interpretation = eval(content[int(num_selected*2+1)])
if text['binary_label'] == 1:
golden_label = int(5 * (1 - text['binary_score']))
else:
golden_label = int(5 * (1 + text['binary_score']))
# (START) off-the-shelf version -- slow at the beginning
# Load model directly
# Use a pipeline as a high-level helper
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
classifier = pipeline("text-classification", model="padmajabfrl/Gender-Classification", device=device)
output = classifier([text['text']])
print(output)
out = output[0]
# (END) off-the-shelf version
if out['label'] == 'Female':
ai_predict = int(10 * out['score'])
else:
ai_predict = 10 - int(10 * out['score'])
user_select = "You focused on "
flag_select = False
if user_important == "":
user_select += "nothing. Interesting! "
else:
user_select += "'" + user_important + "'. "
# for i in range(len(user_marks)):
# if user_marks[i][1] != None and h1[i][0] not in ["P", "N"]:
# flag_select = True
# user_select += "'" + h1[i][0] + "'"
# if i == len(h1) - 1:
# user_select += ". "
# else:
# user_select += ", "
# if not flag_select:
# user_select += "nothing. Interesting! "
user_select += "Wanna see how the AI made the guess? Click here. β¬
οΈ"
if golden_label > 6:
gender = ' (female)'
elif golden_label < 4:
gender = ' (male)'
else:
gender = ' (neutral)'
if abs(golden_label - human_predict) <= 2 and abs(golden_label - ai_predict) <= 2:
chatbot.append(("The correct answer is " + str(golden_label) + gender + ". Congratulations! π Both of you get the correct answer!", user_select))
num1 += 1
num2 += 1
elif abs(golden_label - human_predict) > 2 and abs(golden_label - ai_predict) > 2:
chatbot.append(("The correct answer is " + str(golden_label) + gender + ". Sorry.. No one gets the correct answer. But nice try! π", user_select))
elif abs(golden_label - human_predict) <= 2 and abs(golden_label - ai_predict) > 2:
chatbot.append(("The correct answer is " + str(golden_label) + gender + ". Great! π You are closer to the answer and better than AI!", user_select))
num1 += 1
else:
chatbot.append(("The correct answer is " + str(golden_label) + gender + ". Sorry.. AI wins in this round.", user_select))
num2 += 1
# tot_scores = ''' ### <p style="text-align: center;"> π€ Machine   ''' + str(int(num2)) + '''   VS   ''' + str(int(num1)) + '''   Human π¨π© </p>'''
# tot_scores = ''' #### <p style="text-align: center;"> Today's Scores:</p>
# #### <p style="text-align: center;"> π€ Machine   <span style="color: red;">''' + str(int(num2)) + '''</span>   VS   <span style="color: red;">''' + str(int(num1)) + '''</span>   Human π </p>'''
tot_scores = ''' #### <p style="text-align: center;"> Today's Scores:     π€ Machine   <span style="color: red;">''' + str(int(num2)) + '''</span>   VS   <span style="color: red;">''' + str(int(num1)) + '''</span>   Human π </p>'''
return ai_predict, chatbot, num1, num2, tot_scores
def interpre3(num_selected):
fname = 'data3_convai2_inferred.txt'
tokenizer = AutoTokenizer.from_pretrained("padmajabfrl/Gender-Classification")
with open(fname) as f:
content = f.readlines()
text = eval(content[int(num_selected*2)])
interpretation = eval(content[int(num_selected*2+1)])
print(interpretation)
encodings = tokenizer(text['text'], return_offsets_mapping=True)
print(encodings['offset_mapping'])
is_subword = [False, False]
for i in range(2, len(encodings['offset_mapping'])):
if encodings['offset_mapping'][i][0] == encodings['offset_mapping'][i-1][1]:
is_subword.append(True)
else:
is_subword.append(False)
print(is_subword)
interpretation_combined = []
index_tmp = 0
while index_tmp < (len(interpretation) - 1):
if not is_subword[index_tmp+1]:
interpretation_combined.append(interpretation[index_tmp])
index_tmp += 1
else:
text_combined = interpretation[index_tmp][0]
score_combinded = interpretation[index_tmp][1]
length = 1
while is_subword[index_tmp+length]:
text_combined += interpretation[index_tmp+length][0]
score_combinded += interpretation[index_tmp+length][1]
length += 1
interpretation_combined.append((text_combined, score_combinded/length))
index_tmp += length
interpretation_combined.append(('', 0.0))
print(interpretation_combined)
res = {"original": text['text'], "interpretation": interpretation_combined}
# pos = []
# neg = []
# res = []
# for i in interpretation:
# if i[1] > 0:
# pos.append(i[1])
# elif i[1] < 0:
# neg.append(i[1])
# else:
# continue
# median_pos = np.median(pos)
# median_neg = np.median(neg)
# res.append(("P", "+"))
# res.append(("/", None))
# res.append(("N", "-"))
# res.append(("Review:", None))
# for i in interpretation:
# if i[1] > median_pos:
# res.append((i[0], "+"))
# elif i[1] < median_neg:
# res.append((i[0], "-"))
# else:
# res.append((i[0], None))
return res
def func3_written(text_written, human_predict):
chatbot = []
# num1: Human score; num2: AI score
# (START) off-the-shelf version
# tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
# model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
classifier = pipeline("text-classification", model="padmajabfrl/Gender-Classification", device=device)
tokenizer = AutoTokenizer.from_pretrained("padmajabfrl/Gender-Classification")
output = classifier([text_written])
print(output)
out = output[0]
# (END) off-the-shelf version
if out['label'] == 'Female':
ai_predict = int(10 * out['score'])
else:
ai_predict = 10 - int(10 * out['score'])
if abs(ai_predict - human_predict) <= 2:
chatbot.append(("AI gives it a close score! π", "β¬
οΈ Feel free to try another one! This time letβs see if you can trick the AI into giving a wrong rating. β¬
οΈ"))
else:
chatbot.append(("AI thinks in a different way from human. π", "β¬
οΈ Feel free to try another one! β¬
οΈ"))
import shap
gender_classifier = pipeline("text-classification", model="padmajabfrl/Gender-Classification", return_all_scores=True, device=device)
explainer = shap.Explainer(gender_classifier)
shap_values = explainer([text_written])
interpretation = list(zip(shap_values.data[0], shap_values.values[0, :, 1]))
encodings = tokenizer(text_written, return_offsets_mapping=True)
print(encodings['offset_mapping'])
is_subword = [False, False]
for i in range(2, len(encodings['offset_mapping'])):
if encodings['offset_mapping'][i][0] == encodings['offset_mapping'][i-1][1]:
is_subword.append(True)
else:
is_subword.append(False)
print(is_subword)
interpretation_combined = []
index_tmp = 0
while index_tmp < (len(interpretation) - 1):
if not is_subword[index_tmp+1]:
interpretation_combined.append(interpretation[index_tmp])
index_tmp += 1
else:
text_combined = interpretation[index_tmp][0]
score_combinded = interpretation[index_tmp][1]
length = 1
while is_subword[index_tmp+length]:
text_combined += interpretation[index_tmp+length][0]
score_combinded += interpretation[index_tmp+length][1]
length += 1
interpretation_combined.append((text_combined, score_combinded/length))
index_tmp += length
interpretation_combined.append(('', 0.0))
print(interpretation_combined)
res = {"original": text_written, "interpretation": interpretation_combined}
print(res)
return res, ai_predict, chatbot
|