Spaces:
Running
Running
File size: 1,400 Bytes
33de980 4390904 33de980 df537e3 814b6ba 33de980 37a9f9c 33de980 2902a60 d005da4 33de980 4390904 d005da4 4390904 d005da4 33de980 d005da4 df537e3 5276af2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import io
import os
import sys
from fastapi import FastAPI, File, UploadFile
from fastapi.responses import RedirectResponse
import gradio as gr
import requests
from typing import List
import torch
from pdf2image import convert_from_path
from PIL import Image
from torch.utils.data import DataLoader
from transformers import AutoProcessor
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), './colpali-main')))
from colpali_engine.models.paligemma_colbert_architecture import ColPali
from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
from colpali_engine.utils.colpali_processing_utils import (
process_images,
process_queries,
)
app = FastAPI()
# Load model
model_name = "vidore/colpali"
token = os.environ.get("HF_TOKEN")
model = ColPali.from_pretrained(
"google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cpu", token = token).eval()
model.load_adapter(model_name)
processor = AutoProcessor.from_pretrained(model_name, token = token)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
if device != model.device:
model.to(device)
mock_image = Image.new("RGB", (448, 448), (255, 255, 255))
# In-memory storage
ds = []
images = []
# Rediriger la racine vers /docs
@app.get("/")
def read_root():
return RedirectResponse(url="/docs")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860) |