File size: 2,776 Bytes
4390904
 
 
33de980
df537e3
814b6ba
 
9b4d509
33de980
 
c5d3863
33de980
 
37a9f9c
33de980
2902a60
 
d005da4
 
 
 
 
 
33de980
 
4390904
d005da4
 
 
 
 
4390904
d005da4
 
 
 
 
 
 
33de980
 
 
d005da4
3f023c5
 
 
 
b1bf444
0523b65
b1bf444
 
 
 
c5d3863
74e7ff4
0523b65
b1bf444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0523b65
b1bf444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5276af2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import os
import sys

from fastapi import FastAPI, File, UploadFile
from fastapi.responses import RedirectResponse
import gradio as gr
import requests
import uvicorn
from typing import List
import torch
from pdf2image import convert_from_bytes
from PIL import Image
from torch.utils.data import DataLoader
from transformers import AutoProcessor

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), './colpali-main')))

from colpali_engine.models.paligemma_colbert_architecture import ColPali
from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
from colpali_engine.utils.colpali_processing_utils import (
    process_images,
    process_queries,
)

app = FastAPI()

# Load model
model_name = "vidore/colpali"
token = os.environ.get("HF_TOKEN")
model = ColPali.from_pretrained(
    "google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cpu", token = token).eval()

model.load_adapter(model_name)
processor = AutoProcessor.from_pretrained(model_name, token = token)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
if device != model.device:
    model.to(device)
mock_image = Image.new("RGB", (448, 448), (255, 255, 255))

# In-memory storage
ds = []
images = []

@app.get("/")
def read_root():
    return RedirectResponse(url="/docs")

@app.post("/index")
async def index(files: List[UploadFile] = File(...)):
    global ds, images
    images = []
    ds = []
    for file in files:
        content = await file.read()
        pdf_image_list = convert_from_bytes(content)
        images.extend(pdf_image_list)
    
    dataloader = DataLoader(
        images,
        batch_size=4,
        shuffle=False,
        collate_fn=lambda x: process_images(processor, x),
    )
    for batch_doc in dataloader:
        with torch.no_grad():
            batch_doc = {k: v.to(device) for k, v in batch_doc.items()}
            embeddings_doc = model(**batch_doc)
        ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
    
    return {"message": f"Uploaded and converted {len(images)} pages"}

@app.post("/search")
async def search(query: str, k: int):
    qs = []
    with torch.no_grad():
        batch_query = process_queries(processor, [query], mock_image)
        batch_query = {k: v.to(device) for k, v in batch_query.items()}
        embeddings_query = model(**batch_query)
        qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))

    retriever_evaluator = CustomEvaluator(is_multi_vector=True)
    scores = retriever_evaluator.evaluate(qs, ds)

    top_k_indices = scores.argsort(axis=1)[0][-k:][::-1]

    results = [{"page": idx, "image": "image_placeholder"} for idx in top_k_indices]

    return {"results": results}

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)