Spaces:
Runtime error
Runtime error
File size: 9,643 Bytes
03332e8 755d6fb 92864b7 cf30deb 03332e8 83c5f2b 03332e8 7cb2a9f 03332e8 755d6fb 03332e8 92864b7 03332e8 755d6fb cf30deb 03332e8 755d6fb 03332e8 755d6fb 92864b7 cf30deb 92864b7 755d6fb 92864b7 cf30deb 92864b7 755d6fb 92864b7 cf30deb 92864b7 755d6fb 92864b7 cf30deb 92864b7 755d6fb 92864b7 cf30deb 92864b7 755d6fb 92864b7 755d6fb 92864b7 cf30deb 92864b7 755d6fb 92864b7 cf30deb 92864b7 755d6fb 92864b7 755d6fb 03332e8 98be78d 03332e8 755d6fb cf30deb 755d6fb 98be78d cf30deb 98be78d 755d6fb 0ae48dd 98be78d 0ae48dd 92864b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import pandas_datareader as data
import plotly.express as px
import streamlit as st
import requests
from streamlit_lottie import st_lottie
from keras.models import load_model
from sklearn.preprocessing import MinMaxScaler
from tensorflow.python import tf2
from pandas_datareader import data as pdr
import yfinance as yf
yf.pdr_override()
y_symbols = ['AAPL']
from datetime import datetime
startdate = datetime(2022,12,1)
enddate = datetime(2022,12,2)
data = pdr.get_data_yahoo(y_symbols, start=startdate, end=enddate)['Close']
print(data)
st.set_page_config(
page_title=" Stocks Market Predictor", #The page title, shown in the browser tab.(should be Placement Details)
initial_sidebar_state="auto", #The way sidebar should start out. Auto shows it in desktop.
page_icon=":computer:", #The page favicon. Use the computer emoji
layout="wide", #The way page content should be laid out. "wide" uses the entire screen.
menu_items={ #Configure the menu that appears on the top-right side of this app.
'About': 'https://www.linkedin.com/in/harsh-kashyap-79b87b193/', #A markdown string to show in the About dialog. Used my linkedIn id
}
)
def load_lottieurl(url: str):
r = requests.get(url) #Make a request to a web page, and return the status code:
if r.status_code != 200: #200 is the HTTP status code for "OK", a successful response.
return None
return r.json() #return the animated gif
from datetime import date
from datetime import timedelta
today = date.today()
import datetime
now = datetime.datetime.now()
weekend=today.strftime("%A")
if(weekend=="Saturday"):
today=today-timedelta(days=1)
if(weekend=="Sunday"):
today=today-timedelta(days=2)
# Yesterday date
yesterday = today - timedelta(days = 1)
start='2010-01-01'
end=yesterday
if(today.isoweekday()==1):
current = yesterday = today - timedelta(days = 2)
else:
current = yesterday = today - timedelta(days = 1)
st.title(":computer: Stock Market Predictor") #Title heading of the page
st.markdown("##")
with st.sidebar:
st.title("World Market")
st.title("NIFTY")
nifval=True
try:
nif = pdr.get_data_yahoo('^NSEI', start=current - timedelta(7), end=current)['Close'].tail(1)
print(nif)
except:
nifval=False
if nifval==True:
st.header(nif.iloc[0].round(2))
else:
st.write("Can't load right now")
st.markdown("""---""")
st.title("SENSEX")
senval=True
try:
sen = pdr.get_data_yahoo('^BSESN', start=current - timedelta(7), end=current)['Close'].tail(1)
except:
senval=False
if senval==True:
st.header(sen.iloc[0].round(2))
else:
st.write("Can't load right now")
st.markdown("""---""")
st.title("S&P FUTURES")
spval=True
try:
sp = pdr.get_data_yahoo('ES=F', start=current - timedelta(7), end=current)['Close'].tail(1)
except:
spval=False
if spval==True:
st.header(sp.iloc[0].round(2))
else:
st.write("Can't load right now")
st.markdown("""---""")
st.title("GOLD")
goldval=True
try:
gold = pdr.get_data_yahoo('GC=F', start=current - timedelta(7), end=current)['Close'].tail(1)
except:
goldval=False
if goldval==True:
st.header(gold.iloc[0].round(2))
else:
st.write("Can't load right now")
st.markdown("""---""")
st.title("DOW")
dowval=True
try:
dow = pdr.get_data_yahoo('YM=F', start=current - timedelta(7), end=current)['Close'].tail(1)
except:
dowval=False
if dowval==True:
st.header(dow.iloc[0].round(2))
else:
st.write("Can't load right now")
st.markdown("""---""")
st.title("NASDAQ")
nasval=True
try:
nas = pdr.get_data_yahoo('NQ=F', start=current - timedelta(7), end=current)['Close'].tail(1)
except:
nasval=False
if nasval==True:
st.header(nas.iloc[0].round(2))
else:
st.write("Can't load right now")
st.markdown("""---""")
st.title("CRUDE OIL")
oilval=True
try:
oil = pdr.get_data_yahoo('CL=F', start=current - timedelta(7), end=current)['Close'].tail(1)
except:
oilval=False
if oilval==True:
st.header(oil.iloc[0].round(2))
else:
st.write("Can't load right now")
st.markdown("""---""")
st.subheader("Enter Stock Ticker")
user_input=st.text_input('','HDFCBANK.BO')
val=True
try:
df = pdr.get_data_yahoo(user_input, start=start, end=end)
except:
val=False
st.write("Wrong ticker. Select again")
st.markdown("""---""")
error = load_lottieurl("https://assets9.lottiefiles.com/packages/lf20_k1rx9jox.json") #get the animated gif from file
st_lottie(error, key="Dashboard1", height=400) #change the size to height 400
if val==True:
date=df.index
st.header("Recent Price")
curr = pdr.get_data_yahoo(user_input, start=current - timedelta(7), end=current)['Close'].tail(1)
st.header(curr.iloc[0].round(2))
st.markdown("""---""")
left_column, right_column = st.columns(2) #Columns divided into two parts
with left_column:
dashboard1 = load_lottieurl("https://assets10.lottiefiles.com/packages/lf20_kuhijlvx.json") #get the animated gif from file
st_lottie(dashboard1, key="Dashboard1", height=400) #change the size to height 400
with right_column:
dashboard2 = load_lottieurl("https://assets10.lottiefiles.com/packages/lf20_i2eyukor.json") #get the animated gif from file
st_lottie(dashboard2, key="Dashboard2", height=400) #change the size to height 400
st.markdown("""---""")
#Describing data
st.subheader('Data from 2008 to '+str(end.year))
st.write(df.describe())
st.markdown("""---""")
#Visualisations
st.subheader("Closing Price vs Time Chart of "+str(user_input)) #Header
#plot a line graph
fig_line = px.line(
df,
x = df.index,
y = "Close",
width=1400, #width of the chart
height=750, #height of the chart
)
#remove the background of the back label
fig_line.update_layout(
plot_bgcolor="rgba(0,0,0,0)", #rgba means transparent
xaxis=(dict(showgrid=False)) #dont show the grid
)
#plot the chart
st.plotly_chart(fig_line, use_container_width=True)
st.markdown("""---""")
st.subheader("Closing Price vs Time with 100MA of "+str(user_input)) #Header
ma100=df.Close.rolling(100).mean()
#plot a line graph
fig_line = px.line(
ma100,
x = df.index,
y = ma100,
width=1400, #width of the chart
height=750, #height of the chart
)
#remove the background of the back label
fig_line.update_layout(
plot_bgcolor="rgba(0,0,0,0)", #rgba means transparent
xaxis=(dict(showgrid=False)) #dont show the grid
)
#plot the chart
st.plotly_chart(fig_line, use_container_width=True)
st.markdown("""---""")
st.subheader("Closing Price vs Time with 1 year moving average of "+str(user_input)) #Header
ma365=df.Close.rolling(365).mean()
#plot a line graph
fig_line = px.line(
ma365,
x = df.index,
y = ma365,
width=1400, #width of the chart
height=750, #height of the chart
)
#remove the background of the back label
fig_line.update_layout(
plot_bgcolor="rgba(0,0,0,0)", #rgba means transparent
xaxis=(dict(showgrid=False)) #dont show the grid
)
#plot the chart
st.plotly_chart(fig_line, use_container_width=True)
st.markdown("""---""")
#Splitting data into training and testing
data_training= pd.DataFrame(df['Close'][0:int(len(df)*0.7)])
data_testing= pd.DataFrame(df['Close'][int(len(df)*0.7):int(len(df))])
ydate= date[int(len(df)*0.7):int(len(df))]
print(data_training.shape)
print(data_testing.shape)
#normalising data
scaler=MinMaxScaler(feature_range=(0,1))
dataset_train = scaler.fit_transform(data_training)
dataset_test = scaler.transform(data_testing)
def create_dataset(df):
x = []
y = []
for i in range(50, df.shape[0]):
x.append(df[i-50:i, 0])
y.append(df[i, 0])
x = np.array(x)
y = np.array(y)
return x,y
#Creating dataset
x_train, y_train = create_dataset(dataset_train)
x_test, y_test = create_dataset(dataset_test)
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))
#Load my model
model=load_model('stock_prediction.h5')
predictions = model.predict(x_test)
predictions = scaler.inverse_transform(predictions)
y_test_scaled = scaler.inverse_transform(y_test.reshape(-1, 1))
cydate=ydate[50:]
st.markdown("""---""")
st.subheader("Actual Vs Predicted Price Graph for "+user_input)
fig, ax = plt.subplots(figsize=(16,8))
ax.set_facecolor('#000041')
ax.plot(cydate,y_test_scaled, color='red', label='Original price')
plt.plot(cydate,predictions, color='cyan', label='Predicted price')
plt.xlabel("Date")
plt.ylabel("Price")
plt.title("Stocks for the company "+str(user_input))
plt.legend()
st.pyplot(fig)
st.markdown("<br><hr><center>Made with ❤️ by <a href='https://www.linkedin.com/in/harsh-kashyap/'><strong>Harsh Kashyap</strong></a></center><hr>", unsafe_allow_html=True) |