Spaces:
Running
Running
File size: 18,990 Bytes
4175bfb 79ec766 4175bfb 0d60bcb 4175bfb 1f6ac5b 4175bfb 1f6ac5b 4175bfb 1f6ac5b 4175bfb 1f6ac5b 4175bfb 0d60bcb 4175bfb 79ec766 1f6ac5b 0d60bcb 4175bfb 0d60bcb 79ec766 1f6ac5b bf70086 79ec766 53e2b13 79ec766 53e2b13 bf70086 79ec766 bf70086 79ec766 bf70086 79ec766 a038826 0d60bcb 4175bfb 79ec766 bf70086 4175bfb bf70086 1f6ac5b bf70086 1f6ac5b bf70086 1f6ac5b bf70086 1f6ac5b bf70086 1f6ac5b bf70086 1f6ac5b bf70086 1f6ac5b bf70086 79ec766 1f6ac5b bf70086 79ec766 bf70086 1f6ac5b bf70086 1f6ac5b bf70086 1f6ac5b bf70086 1f6ac5b bf70086 1f6ac5b bf70086 1f6ac5b bf70086 1f6ac5b 79ec766 1f6ac5b bf70086 79ec766 1f6ac5b bf70086 1f6ac5b bf70086 1f6ac5b 79ec766 bf70086 79ec766 bf70086 79ec766 bf70086 79ec766 bf70086 1f6ac5b bf70086 79ec766 bf70086 79ec766 bf70086 79ec766 bf70086 a582651 79ec766 bf70086 33d41eb bf70086 79ec766 bf70086 14a8d47 79ec766 bf70086 79ec766 bf70086 79ec766 bf70086 0d60bcb bf70086 14a8d47 79ec766 1f6ac5b 79ec766 bf70086 0d60bcb 1f6ac5b bf70086 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
import gradio as gr
import pandas as pd
import yfinance as yf
import plotly.graph_objects as go
import numpy as np
# Functions for calculating indicators
def calculate_sma(df, window):
return df['Close'].rolling(window=window).mean()
def calculate_ema(df, window):
return df['Close'].ewm(span=window, adjust=False).mean()
def calculate_macd(df):
short_ema = df['Close'].ewm(span=12, adjust=False).mean()
long_ema = df['Close'].ewm(span=26, adjust=False).mean()
macd = short_ema - long_ema
signal = macd.ewm(span=9, adjust=False).mean()
return macd, signal
def calculate_rsi(df):
delta = df['Close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
rs = gain / loss
rsi = 100 - (100 / (1 + rs))
return rsi
def calculate_bollinger_bands(df):
middle_bb = df['Close'].rolling(window=20).mean()
upper_bb = middle_bb + 2 * df['Close'].rolling(window=20).std()
lower_bb = middle_bb - 2 * df['Close'].rolling(window=20).std()
return middle_bb, upper_bb, lower_bb
def calculate_stochastic_oscillator(df):
lowest_low = df['Low'].rolling(window=14).min()
highest_high = df['High'].rolling(window=14).max()
slowk = ((df['Close'] - lowest_low) / (highest_high - lowest_low)) * 100
slowd = slowk.rolling(window=3).mean()
return slowk, slowd
def calculate_cmf(df, window=20):
mfv = ((df['Close'] - df['Low']) - (df['High'] - df['Close'])) / (df['High'] - df['Low']) * df['Volume']
cmf = mfv.rolling(window=window).sum() / df['Volume'].rolling(window=window).sum()
return cmf
def calculate_cci(df, window=20):
typical_price = (df['High'] + df['Low'] + df['Close']) / 3
sma = typical_price.rolling(window=window).mean()
mean_deviation = (typical_price - sma).abs().rolling(window=window).mean()
cci = (typical_price - sma) / (0.015 * mean_deviation)
return cci
# Function to adjust thresholds based on sensitivity
def adjust_thresholds_by_sensitivity(sensitivity):
"""
Convert a single sensitivity value (1-10) to appropriate thresholds
1 = Most sensitive (more signals)
10 = Least sensitive (fewer, stronger signals)
"""
# Map sensitivity to thresholds
if sensitivity == 1: # Most sensitive
return {
'SMA': 5,
'RSI_lower': 30,
'RSI_upper': 70,
'BB': 0.5,
'Stochastic_lower': 20,
'Stochastic_upper': 80,
'CMF': 0.1,
'CCI': 100
}
elif sensitivity == 10: # Least sensitive
return {
'SMA': 50,
'RSI_lower': 5,
'RSI_upper': 95,
'BB': 5,
'Stochastic_lower': 5,
'Stochastic_upper': 95,
'CMF': 0.6,
'CCI': 300
}
else:
# Linear interpolation between extremes
factor = (sensitivity - 1) / 9 # 0 to 1
return {
'SMA': int(5 + (50 - 5) * factor),
'RSI_lower': int(30 - (30 - 5) * factor),
'RSI_upper': int(70 + (95 - 70) * factor),
'BB': 0.5 + (5 - 0.5) * factor,
'Stochastic_lower': int(20 - (20 - 5) * factor),
'Stochastic_upper': int(80 + (95 - 80) * factor),
'CMF': 0.1 + (0.6 - 0.1) * factor,
'CCI': int(100 + (300 - 100) * factor)
}
def generate_trading_signals(df, thresholds, enabled_signals):
# Calculate various indicators
df['SMA_30'] = calculate_sma(df, 30)
df['SMA_100'] = calculate_sma(df, 100)
df['EMA_12'] = calculate_ema(df, 12)
df['EMA_26'] = calculate_ema(df, 26)
df['RSI'] = calculate_rsi(df)
df['MiddleBB'], df['UpperBB'], df['LowerBB'] = calculate_bollinger_bands(df)
df['SlowK'], df['SlowD'] = calculate_stochastic_oscillator(df)
df['CMF'] = calculate_cmf(df)
df['CCI'] = calculate_cci(df)
# Initialize all signals as 0 (no signal)
signal_columns = ['SMA_Signal', 'MACD_Signal', 'RSI_Signal', 'BB_Signal',
'Stochastic_Signal', 'CMF_Signal', 'CCI_Signal']
for col in signal_columns:
df[col] = 0
# Only generate signals for enabled indicators
# SMA Signal
if 'SMA' in enabled_signals:
sma_threshold = thresholds['SMA']
df['SMA_Diff_Pct'] = (df['SMA_30'] - df['SMA_100']) / df['SMA_100'] * 100
df['SMA_Signal'] = np.where(df['SMA_Diff_Pct'] > sma_threshold, 1, 0)
df['SMA_Signal'] = np.where(df['SMA_Diff_Pct'] < -sma_threshold, -1, df['SMA_Signal'])
# MACD Signal
if 'MACD' in enabled_signals:
macd, signal = calculate_macd(df)
df['MACD'] = macd
df['MACD_Signal_Line'] = signal
df['MACD_Signal'] = np.select([(macd > signal) & (macd.shift(1) <= signal.shift(1)),
(macd < signal) & (macd.shift(1) >= signal.shift(1))], [1, -1], default=0)
# RSI Signals
if 'RSI' in enabled_signals:
rsi_lower = thresholds['RSI_lower']
rsi_upper = thresholds['RSI_upper']
df['RSI_Signal'] = np.where(df['RSI'] < rsi_lower, 1, 0)
df['RSI_Signal'] = np.where(df['RSI'] > rsi_upper, -1, df['RSI_Signal'])
# Bollinger Bands
if 'BB' in enabled_signals:
bb_buffer = thresholds['BB'] / 100 # Convert percentage to decimal
df['BB_Signal'] = np.where(
(df['Close'] < df['LowerBB'] * (1 - bb_buffer)) &
(df['Close'].shift(1) < df['LowerBB'].shift(1) * (1 - bb_buffer)) &
(df['Close'].shift(2) < df['LowerBB'].shift(2) * (1 - bb_buffer)), 1, 0
)
df['BB_Signal'] = np.where(
(df['Close'] > df['UpperBB'] * (1 + bb_buffer)) &
(df['Close'].shift(1) > df['UpperBB'].shift(1) * (1 + bb_buffer)) &
(df['Close'].shift(2) > df['UpperBB'].shift(2) * (1 + bb_buffer)), -1, df['BB_Signal']
)
# Stochastic signals
if 'Stochastic' in enabled_signals:
stoch_lower = thresholds['Stochastic_lower']
stoch_upper = thresholds['Stochastic_upper']
df['Stochastic_Signal'] = np.where((df['SlowK'] < stoch_lower) & (df['SlowD'] < stoch_lower), 1, 0)
df['Stochastic_Signal'] = np.where((df['SlowK'] > stoch_upper) & (df['SlowD'] > stoch_upper), -1, df['Stochastic_Signal'])
# CMF Signals
if 'CMF' in enabled_signals:
cmf_threshold = thresholds['CMF']
df['CMF_Signal'] = np.where(df['CMF'] > cmf_threshold, -1, np.where(df['CMF'] < -cmf_threshold, 1, 0))
# CCI Signals
if 'CCI' in enabled_signals:
cci_threshold = thresholds['CCI']
df['CCI_Signal'] = np.where(df['CCI'] < -cci_threshold, 1, 0)
df['CCI_Signal'] = np.where(df['CCI'] > cci_threshold, -1, df['CCI_Signal'])
return df
def plot_simplified_signals(df, ticker, enabled_signals):
# Create a figure with improved styling
fig = go.Figure()
# Use a line chart instead of candlestick for simplicity
fig.add_trace(go.Scatter(
x=df.index,
y=df['Close'],
mode='lines',
name='Price',
line=dict(color='#26a69a', width=2),
opacity=0.9
))
# Add SMA lines
fig.add_trace(go.Scatter(
x=df.index, y=df['SMA_30'],
mode='lines',
name='SMA 30',
line=dict(color='#42a5f5', width=1.5, dash='dot')
))
fig.add_trace(go.Scatter(
x=df.index, y=df['SMA_100'],
mode='lines',
name='SMA 100',
line=dict(color='#5e35b1', width=1.5, dash='dot')
))
# Add bollinger bands with lighter appearance
if 'BB' in enabled_signals:
fig.add_trace(go.Scatter(
x=df.index, y=df['UpperBB'],
mode='lines',
name='Upper BB',
line=dict(color='rgba(250, 250, 250, 0.3)', width=1),
showlegend=True
))
fig.add_trace(go.Scatter(
x=df.index, y=df['LowerBB'],
mode='lines',
name='Lower BB',
line=dict(color='rgba(250, 250, 250, 0.3)', width=1),
fill='tonexty',
fillcolor='rgba(173, 216, 230, 0.1)',
showlegend=True
))
# Group signals by type to reduce legend clutter
buy_signals_df = pd.DataFrame(index=df.index)
sell_signals_df = pd.DataFrame(index=df.index)
signal_names = [f"{signal}_Signal" for signal in enabled_signals]
# Collect all buy and sell signals
for signal in signal_names:
buy_signals_df[signal] = np.where(df[signal] == 1, df['Close'], np.nan)
sell_signals_df[signal] = np.where(df[signal] == -1, df['Close'], np.nan)
# Add hover data
buy_hovers = []
for idx in buy_signals_df.index:
signals_on_day = [col.split('_')[0] for col in buy_signals_df.columns
if not pd.isna(buy_signals_df.loc[idx, col])]
if signals_on_day:
hover_text = f"Buy Signals: {', '.join(signals_on_day)}<br>Date: {idx.strftime('%Y-%m-%d')}<br>Price: ${df.loc[idx, 'Close']:.2f}"
buy_hovers.append((idx, df.loc[idx, 'Close'], hover_text))
sell_hovers = []
for idx in sell_signals_df.index:
signals_on_day = [col.split('_')[0] for col in sell_signals_df.columns
if not pd.isna(sell_signals_df.loc[idx, col])]
if signals_on_day:
hover_text = f"Sell Signals: {', '.join(signals_on_day)}<br>Date: {idx.strftime('%Y-%m-%d')}<br>Price: ${df.loc[idx, 'Close']:.2f}"
sell_hovers.append((idx, df.loc[idx, 'Close'], hover_text))
# Add buy signals (single trace for all buy signals)
if buy_hovers:
buy_x, buy_y, buy_texts = zip(*buy_hovers)
fig.add_trace(go.Scatter(
x=buy_x,
y=[y * 0.995 for y in buy_y], # Position slightly below price for visibility
mode='markers',
marker=dict(symbol='triangle-up', size=10, color='#00e676', line=dict(color='white', width=1)),
name='Buy Signals',
hoverinfo='text',
hovertext=buy_texts
))
# Add sell signals (single trace for all sell signals)
if sell_hovers:
sell_x, sell_y, sell_texts = zip(*sell_hovers)
fig.add_trace(go.Scatter(
x=sell_x,
y=[y * 1.005 for y in sell_y], # Position slightly above price for visibility
mode='markers',
marker=dict(symbol='triangle-down', size=10, color='#ff5252', line=dict(color='white', width=1)),
name='Sell Signals',
hoverinfo='text',
hovertext=sell_texts
))
# Improve the layout with larger dimensions
fig.update_layout(
title=dict(
text=f'{ticker}: Technical Analysis & Trading Signals',
font=dict(size=24, color='white'),
x=0.5
),
xaxis=dict(
title='Date',
gridcolor='rgba(255, 255, 255, 0.1)',
linecolor='rgba(255, 255, 255, 0.2)'
),
yaxis=dict(
title='Price',
side='right',
gridcolor='rgba(255, 255, 255, 0.1)',
linecolor='rgba(255, 255, 255, 0.2)',
tickprefix='$'
),
plot_bgcolor='#1e1e1e',
paper_bgcolor='#1e1e1e',
font=dict(color='white'),
hovermode='closest',
legend=dict(
bgcolor='rgba(30, 30, 30, 0.8)',
bordercolor='rgba(255, 255, 255, 0.2)',
borderwidth=1,
font=dict(color='white', size=10),
orientation='h',
yanchor='bottom',
y=1.02,
xanchor='center',
x=0.5
),
margin=dict(l=50, r=50, b=100, t=100, pad=4),
height=800, # Increased height
width=1200 # Increased width
)
# Add range selector for better time navigation
fig.update_xaxes(
rangeslider_visible=True,
rangeselector=dict(
buttons=list([
dict(count=1, label="1m", step="month", stepmode="backward"),
dict(count=3, label="3m", step="month", stepmode="backward"),
dict(count=6, label="6m", step="month", stepmode="backward"),
dict(count=1, label="YTD", step="year", stepmode="todate"),
dict(count=1, label="1y", step="year", stepmode="backward"),
dict(step="all")
]),
bgcolor='rgba(30, 30, 30, 0.8)',
activecolor='#536dfe',
font=dict(color='white')
)
)
return fig
def stock_analysis(ticker, start_date, end_date,
sensitivity, # New simplified parameter
use_sma, use_macd, use_rsi, use_bb,
use_stoch, use_cmf, use_cci):
try:
# Download stock data from Yahoo Finance
df = yf.download(ticker, start=start_date, end=end_date)
# Check if data was retrieved
if df.empty:
fig = go.Figure()
fig.add_annotation(
text="No data found for this ticker and date range",
xref="paper", yref="paper",
x=0.5, y=0.5,
showarrow=False,
font=dict(color="white", size=16)
)
fig.update_layout(
plot_bgcolor='#1e1e1e',
paper_bgcolor='#1e1e1e',
height=800,
width=1200
)
return fig
# If the DataFrame has a MultiIndex for columns, handle it
if isinstance(df.columns, pd.MultiIndex):
df.columns = df.columns.droplevel(1) if len(df.columns.levels) > 1 else df.columns
# Create list of enabled signals
enabled_signals = []
if use_sma: enabled_signals.append('SMA')
if use_macd: enabled_signals.append('MACD')
if use_rsi: enabled_signals.append('RSI')
if use_bb: enabled_signals.append('BB')
if use_stoch: enabled_signals.append('Stochastic')
if use_cmf: enabled_signals.append('CMF')
if use_cci: enabled_signals.append('CCI')
# If no signals are enabled, enable all by default
if not enabled_signals:
enabled_signals = ['SMA', 'MACD', 'RSI', 'BB', 'Stochastic', 'CMF', 'CCI']
# Get thresholds from sensitivity
thresholds = adjust_thresholds_by_sensitivity(sensitivity)
# Generate signals
df = generate_trading_signals(df, thresholds, enabled_signals)
# Last 360 days for plotting (or all data if less than 360 days)
df_last_360 = df.tail(min(360, len(df)))
# Plot simplified signals
fig = plot_simplified_signals(df_last_360, ticker, enabled_signals)
return fig
except Exception as e:
# Create error figure
fig = go.Figure()
fig.add_annotation(
text=f"Error: {str(e)}",
xref="paper", yref="paper",
x=0.5, y=0.5,
showarrow=False,
font=dict(color="#ff5252", size=16)
)
fig.update_layout(
plot_bgcolor='#1e1e1e',
paper_bgcolor='#1e1e1e',
font=dict(color='white'),
height=800,
width=1200
)
return fig
# Define Gradio interface with improved styling
custom_theme = gr.themes.Monochrome(
primary_hue="blue",
secondary_hue="purple",
neutral_hue="gray",
radius_size=gr.themes.sizes.radius_sm,
font=[gr.themes.GoogleFont("Inter"), "system-ui", "sans-serif"],
)
with gr.Blocks(theme=custom_theme) as demo:
gr.Markdown("# Technical Analysis")
gr.Markdown("This app helps you analyze stocks with technical indicators and generates trading signals.")
with gr.Row():
with gr.Column(scale=1):
ticker_input = gr.Textbox(
label="Stock Ticker Symbol",
placeholder="e.g., AAPL, NVDA, MSFT",
value="NVDA"
)
start_date_input = gr.Textbox(
label="Start Date",
placeholder="YYYY-MM-DD",
value="2022-01-01"
)
end_date_input = gr.Textbox(
label="End Date",
placeholder="YYYY-MM-DD",
value="2026-01-01" # Updated to current date
)
gr.Markdown("### Choose Indicators")
with gr.Row():
use_sma = gr.Checkbox(label="SMA", value=True)
use_macd = gr.Checkbox(label="MACD", value=True)
use_rsi = gr.Checkbox(label="RSI", value=True)
use_bb = gr.Checkbox(label="Bollinger", value=True)
use_stoch = gr.Checkbox(label="Stochastic", value=True)
use_cmf = gr.Checkbox(label="CMF", value=True)
use_cci = gr.Checkbox(label="CCI", value=True)
gr.Markdown("### Signal Sensitivity")
with gr.Row():
sensitivity = gr.Slider(
label="Signal Sensitivity",
minimum=1,
maximum=10,
step=1,
value=5,
info="1 = (sensitive), 10 = (strict)"
)
# Create a submit button with styling
button = gr.Button("Analyze Stock", variant="primary")
# Output: Signals plot with increased height
signals_output = gr.Plot(label="Technical Analysis & Trading Signals")
# Link button to function with updated parameters
button.click(
stock_analysis,
inputs=[
ticker_input, start_date_input, end_date_input,
sensitivity, # Single threshold parameter
use_sma, use_macd, use_rsi, use_bb,
use_stoch, use_cmf, use_cci
],
outputs=[signals_output]
)
gr.Markdown("""
## 📈 Trading Signals Legend
- **Green Triangle Up (▲)** indicates Buy signals
- **Red Triangle Down (▼)** indicates Sell signals
- Hover over signals to see which indicators triggered them
## 🔍 Signal Sensitivity Explained
- **Lower values (1-3)**: More frequent signals, good for short-term trading
- **Medium values (4-6)**: Balanced approach, moderate number of signals
- **Higher values (7-10)**: Fewer but potentially stronger signals, good for long-term investors
## 🛠️ Trading Strategy Tips
- **Day Trading**: Use lower sensitivity with multiple indicators
- **Swing Trading**: Use medium sensitivity with 3-4 indicators
- **Long-term Investing**: Use higher sensitivity focusing on trend indicators
- **Combine**: Using multiple indicators helps confirm signals and reduce false positives
""")
# Launch the interface
demo.launch() |