|
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor |
|
from transformers.pipelines.audio_utils import ffmpeg_read |
|
from huggingface_hub import login |
|
import yt_dlp as youtube_dl |
|
import gradio as gr |
|
import tempfile |
|
import spaces |
|
import torch |
|
import time |
|
import os |
|
|
|
login(os.environ["HF"], add_to_git_credential=True) |
|
|
|
BATCH_SIZE = 16 |
|
FILE_LIMIT_MB = 1000 |
|
YT_LENGTH_LIMIT_S = 3600 |
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
model_id = "Kushtrim/whisper-large-v3-turbo-shqip-115h" |
|
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, use_safetensors=True).to(device) |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
pipe = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, |
|
max_new_tokens=256, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, |
|
token=os.environ["HF"]) |
|
|
|
@spaces.GPU |
|
def transcribe(inputs, task): |
|
if inputs is None: |
|
raise gr.Error( |
|
"No audio file submitted! Please upload or record an audio file before submitting your request.") |
|
|
|
text = pipe(inputs, generate_kwargs={ |
|
"task": task, 'language': 'sq'}, return_timestamps=True)["text"] |
|
return text |
|
|
|
|
|
def _return_yt_html_embed(yt_url): |
|
video_id = yt_url.split("?v=")[-1] |
|
HTML_str = ( |
|
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' |
|
" </center>" |
|
) |
|
return HTML_str |
|
|
|
|
|
def download_yt_audio(yt_url, filename): |
|
info_loader = youtube_dl.YoutubeDL() |
|
|
|
try: |
|
info = info_loader.extract_info(yt_url, download=False) |
|
except youtube_dl.utils.DownloadError as err: |
|
raise gr.Error(str(err)) |
|
|
|
file_length = info["duration_string"] |
|
file_h_m_s = file_length.split(":") |
|
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s] |
|
|
|
if len(file_h_m_s) == 1: |
|
file_h_m_s.insert(0, 0) |
|
if len(file_h_m_s) == 2: |
|
file_h_m_s.insert(0, 0) |
|
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2] |
|
|
|
if file_length_s > YT_LENGTH_LIMIT_S: |
|
yt_length_limit_hms = time.strftime( |
|
"%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) |
|
file_length_hms = time.strftime( |
|
"%HH:%MM:%SS", time.gmtime(file_length_s)) |
|
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") |
|
|
|
ydl_opts = {"outtmpl": filename, |
|
"format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} |
|
|
|
with youtube_dl.YoutubeDL(ydl_opts) as ydl: |
|
try: |
|
ydl.download([yt_url]) |
|
except youtube_dl.utils.ExtractorError as err: |
|
raise gr.Error(str(err)) |
|
|
|
|
|
def yt_transcribe(yt_url, task, max_filesize=75.0): |
|
html_embed_str = _return_yt_html_embed(yt_url) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
filepath = os.path.join(tmpdirname, "video.mp4") |
|
download_yt_audio(yt_url, filepath) |
|
with open(filepath, "rb") as f: |
|
inputs = f.read() |
|
|
|
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) |
|
inputs = {"array": inputs, |
|
"sampling_rate": pipe.feature_extractor.sampling_rate} |
|
|
|
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={ |
|
"task": task}, return_timestamps=True)["text"] |
|
|
|
return html_embed_str, text |
|
|
|
|
|
demo = gr.Blocks() |
|
|
|
file_transcribe = gr.Interface( |
|
fn=transcribe, |
|
inputs=[ |
|
gr.Audio(sources=["upload"], type="filepath", label="Audio file"), |
|
], |
|
outputs="text", |
|
title="Whisper Large V3 Turbo Shqip: Transcribe Audio", |
|
description=("This fine-tuned Whisper model provides reliable transcription for Albanian audio, whether from a microphone or an uploaded file. " |
|
"Key details about this project:" |
|
"\n\n- Fine-tuned on 115 hours of carefully curated Albanian audio data. " |
|
"\n- This is the third training run, reflecting continuous improvements as the dataset evolves. " |
|
f"\n- Hosted on Hugging Face. Repository: [{model_id}](https://huggingface.co/{model_id}). " |
|
), |
|
allow_flagging="never", |
|
) |
|
|
|
mf_transcribe = gr.Interface( |
|
fn=transcribe, |
|
inputs=[ |
|
gr.Audio(sources=["microphone"], type="filepath"), |
|
], |
|
outputs="text", |
|
title="Whisper Large V3 Turbo Shqip: Transcribe Audio", |
|
description=("This fine-tuned Whisper model provides reliable transcription for Albanian audio, whether from a microphone or an uploaded file. " |
|
"Key details about this project:" |
|
"\n\n- Fine-tuned on 115 hours of carefully curated Albanian audio data. " |
|
"\n- This is the third training run, reflecting continuous improvements as the dataset evolves. " |
|
f"\n- Hosted on Hugging Face. Repository: [{model_id}](https://huggingface.co/{model_id}). " |
|
), |
|
allow_flagging="never", |
|
) |
|
|
|
yt_transcribe = gr.Interface( |
|
fn=yt_transcribe, |
|
inputs=[ |
|
gr.Textbox( |
|
lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), |
|
], |
|
outputs=["html", "text"], |
|
title="Whisper Large V3 Turbo Shqip: Transcribe Audio", |
|
description=("This fine-tuned Whisper model provides reliable transcription for Albanian audio, whether from a microphone or an uploaded file. " |
|
"Key details about this project:" |
|
"\n\n- Fine-tuned on 115 hours of carefully curated Albanian audio data. " |
|
"\n- This is the third training run, reflecting continuous improvements as the dataset evolves. " |
|
f"\n- Hosted on Hugging Face. Repository: [{model_id}](https://huggingface.co/{model_id}). " |
|
), |
|
allow_flagging="never", |
|
) |
|
|
|
with demo: |
|
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"]) |
|
|
|
demo.launch() |
|
|