File size: 5,181 Bytes
c141e5a
 
 
57fb01c
c141e5a
 
 
4295bdc
 
57fb01c
d3e8302
4295bdc
 
 
 
 
d3e8302
e892652
1a90a70
e892652
4295bdc
136c7a1
2f607d2
8ddcc27
4295bdc
57fb01c
 
 
4295bdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57fb01c
c141e5a
 
 
 
3f24f4c
c141e5a
 
 
4295bdc
c141e5a
4295bdc
c141e5a
 
5e4cf3d
c141e5a
 
 
 
 
 
 
57fb01c
 
c141e5a
 
 
 
 
 
 
 
4295bdc
 
 
 
57fb01c
4295bdc
c141e5a
57fb01c
c141e5a
 
4295bdc
c141e5a
57fb01c
4295bdc
57fb01c
4295bdc
c141e5a
e3612e6
4295bdc
 
 
 
 
 
 
 
 
 
 
332fc39
c141e5a
4295bdc
 
 
 
 
 
c141e5a
4295bdc
 
 
 
 
 
 
 
 
c141e5a
4295bdc
 
 
 
 
 
 
 
c141e5a
57fb01c
4295bdc
57fb01c
4295bdc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import torch
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from huggingface_hub import InferenceClient


HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = "LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct"
MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 512
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "16384"))


DESCRIPTION = """\
# <center> EXAONE 3.5: Series of Large Language Models for Real-world Use Cases </center>

##### <center> We hope EXAONE continues to advance Expert AI with its effectiveness and bilingual skills. </center>

<center>👋 For more details, please check <a href=https://huggingface.co/collections/LGAI-EXAONE/exaone-35-674d0e1bb3dcd2ab6f39dbb4>EXAONE-3.5 collections</a>, <a href=https://www.lgresearch.ai/blog/view?seq=507>our blog</a> or <a href=https://arxiv.org/abs/2412.04862>technical report</a></center>

#### <center> EXAONE-3.5-32B-Instruct Demo Coming Soon.. </center>
"""


EXAMPLES = [
    ["Explain how wonderful you are"],
    ["스스로를 자랑해 봐"],
]
BOT_AVATAR = "EXAONE_logo.png"
selected_model = gr.Radio(value="https://jps6tfdq34ydttbh.us-east4.gcp.endpoints.huggingface.cloud",visible=False)
ADDITIONAL_INPUTS = [
    gr.Textbox(
            value="You are EXAONE model from LG AI Research, a helpful assistant.",
            label="System Prompt",
            render=False,
    ),
    gr.Slider(
        label="Max new tokens",
        minimum=1,
        maximum=MAX_NEW_TOKENS,
        step=1,
        value=DEFAULT_MAX_NEW_TOKENS,
    ),
    gr.Slider(
        label="Temperature",
        minimum=0.1,
        maximum=2.0,
        step=0.1,
        value=0.7,
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        minimum=0.05,
        maximum=1.0,
        step=0.05,
        value=0.9,
    ),
    gr.Slider(
        label="Top-k",
        minimum=1,
        maximum=1000,
        step=1,
        value=1,
    ),
    selected_model
]

tokenizer = AutoTokenizer.from_pretrained("LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct")

def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    system_prompt: str,
    max_new_tokens: int = 512,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    selected_model: str = "https://jps6tfdq34ydttbh.us-east4.gcp.endpoints.huggingface.cloud",
) -> Iterator[str]:
    print(f'model: {selected_model}')
    messages = [{"role":"system","content": system_prompt}]
    print(f'message: {message}')
    print(f'chat_history: {chat_history}')
    for user, assistant in chat_history:
        messages.extend(
            [
                {"role": "user", "content": user},
                {"role": "assistant", "content": assistant},
            ]
        )
    messages.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(
        messages, 
        add_generation_prompt=True, 
        return_tensors="pt"
    )
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from messages as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    
    messages = tokenizer.decode(input_ids[0])
    
    client = InferenceClient(selected_model, token=HF_TOKEN)

    gen_kwargs = dict(
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        stop=["[|endofturn|]"]
    )

    output = client.text_generation(messages, **gen_kwargs)

    return output


def radio1_change(model_size):
    return f"<center><font size=5>EXAONE-3.5-{model_size}-instruct</center>"


def choices_model(model_size):
    endpoint_url_dict = {
        "2.4B": "https://jps6tfdq34ydttbh.us-east4.gcp.endpoints.huggingface.cloud", # L4
        "7.8B": "https://wafz6im0d595g715.us-east-1.aws.endpoints.huggingface.cloud", # L40S
    }
    return endpoint_url_dict[model_size]


chat_interface = gr.ChatInterface(
        fn=generate,
        chatbot=gr.Chatbot(
            label="EXAONE-3.5-Instruct",
            avatar_images=[None, BOT_AVATAR],
            layout="bubble",
            bubble_full_width=False
        ),
        additional_inputs=ADDITIONAL_INPUTS,
        stop_btn=None,
        examples=EXAMPLES,
        cache_examples=False,
    )


with gr.Blocks(fill_height=True) as demo:
    gr.Markdown("""<p align="center"><img src="https://huggingface.co/spaces/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct-Demo/resolve/main/EXAONE_Symbol%2BBI_3d.png" style="margin-right: 20px; height: 50px"/><p>""")
    gr.Markdown(DESCRIPTION)

    markdown = gr.Markdown("<center><font size=5>EXAONE-3.5-2.4B-instruct</center>")
    with gr.Row():
        model_size = ["2.4B", "7.8B"]
        radio1 = gr.Radio(choices=model_size, label="EXAONE-3.5-Instruct", value=model_size[0])
    
    radio1.change(radio1_change, inputs=radio1, outputs=markdown)
    radio1.change(choices_model, inputs=radio1, outputs=selected_model)
    chat_interface.render()

    
if __name__ == "__main__":
    demo.queue(max_size=25).launch()