File size: 5,181 Bytes
c141e5a 57fb01c c141e5a 4295bdc 57fb01c d3e8302 4295bdc d3e8302 e892652 1a90a70 e892652 4295bdc 136c7a1 2f607d2 8ddcc27 4295bdc 57fb01c 4295bdc 57fb01c c141e5a 3f24f4c c141e5a 4295bdc c141e5a 4295bdc c141e5a 5e4cf3d c141e5a 57fb01c c141e5a 4295bdc 57fb01c 4295bdc c141e5a 57fb01c c141e5a 4295bdc c141e5a 57fb01c 4295bdc 57fb01c 4295bdc c141e5a e3612e6 4295bdc 332fc39 c141e5a 4295bdc c141e5a 4295bdc c141e5a 4295bdc c141e5a 57fb01c 4295bdc 57fb01c 4295bdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import torch
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from huggingface_hub import InferenceClient
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = "LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct"
MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 512
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "16384"))
DESCRIPTION = """\
# <center> EXAONE 3.5: Series of Large Language Models for Real-world Use Cases </center>
##### <center> We hope EXAONE continues to advance Expert AI with its effectiveness and bilingual skills. </center>
<center>👋 For more details, please check <a href=https://huggingface.co/collections/LGAI-EXAONE/exaone-35-674d0e1bb3dcd2ab6f39dbb4>EXAONE-3.5 collections</a>, <a href=https://www.lgresearch.ai/blog/view?seq=507>our blog</a> or <a href=https://arxiv.org/abs/2412.04862>technical report</a></center>
#### <center> EXAONE-3.5-32B-Instruct Demo Coming Soon.. </center>
"""
EXAMPLES = [
["Explain how wonderful you are"],
["스스로를 자랑해 봐"],
]
BOT_AVATAR = "EXAONE_logo.png"
selected_model = gr.Radio(value="https://jps6tfdq34ydttbh.us-east4.gcp.endpoints.huggingface.cloud",visible=False)
ADDITIONAL_INPUTS = [
gr.Textbox(
value="You are EXAONE model from LG AI Research, a helpful assistant.",
label="System Prompt",
render=False,
),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=2.0,
step=0.1,
value=0.7,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=1,
),
selected_model
]
tokenizer = AutoTokenizer.from_pretrained("LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct")
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 512,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
selected_model: str = "https://jps6tfdq34ydttbh.us-east4.gcp.endpoints.huggingface.cloud",
) -> Iterator[str]:
print(f'model: {selected_model}')
messages = [{"role":"system","content": system_prompt}]
print(f'message: {message}')
print(f'chat_history: {chat_history}')
for user, assistant in chat_history:
messages.extend(
[
{"role": "user", "content": user},
{"role": "assistant", "content": assistant},
]
)
messages.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
)
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from messages as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
messages = tokenizer.decode(input_ids[0])
client = InferenceClient(selected_model, token=HF_TOKEN)
gen_kwargs = dict(
max_new_tokens=max_new_tokens,
top_p=top_p,
top_k=top_k,
temperature=temperature,
stop=["[|endofturn|]"]
)
output = client.text_generation(messages, **gen_kwargs)
return output
def radio1_change(model_size):
return f"<center><font size=5>EXAONE-3.5-{model_size}-instruct</center>"
def choices_model(model_size):
endpoint_url_dict = {
"2.4B": "https://jps6tfdq34ydttbh.us-east4.gcp.endpoints.huggingface.cloud", # L4
"7.8B": "https://wafz6im0d595g715.us-east-1.aws.endpoints.huggingface.cloud", # L40S
}
return endpoint_url_dict[model_size]
chat_interface = gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(
label="EXAONE-3.5-Instruct",
avatar_images=[None, BOT_AVATAR],
layout="bubble",
bubble_full_width=False
),
additional_inputs=ADDITIONAL_INPUTS,
stop_btn=None,
examples=EXAMPLES,
cache_examples=False,
)
with gr.Blocks(fill_height=True) as demo:
gr.Markdown("""<p align="center"><img src="https://huggingface.co/spaces/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct-Demo/resolve/main/EXAONE_Symbol%2BBI_3d.png" style="margin-right: 20px; height: 50px"/><p>""")
gr.Markdown(DESCRIPTION)
markdown = gr.Markdown("<center><font size=5>EXAONE-3.5-2.4B-instruct</center>")
with gr.Row():
model_size = ["2.4B", "7.8B"]
radio1 = gr.Radio(choices=model_size, label="EXAONE-3.5-Instruct", value=model_size[0])
radio1.change(radio1_change, inputs=radio1, outputs=markdown)
radio1.change(choices_model, inputs=radio1, outputs=selected_model)
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=25).launch() |