|
import os |
|
from threading import Thread |
|
from typing import Iterator |
|
import gradio as gr |
|
import torch |
|
import spaces |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
from huggingface_hub import InferenceClient |
|
|
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN", None) |
|
MODEL = "LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct" |
|
MAX_NEW_TOKENS = 4096 |
|
DEFAULT_MAX_NEW_TOKENS = 512 |
|
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "16384")) |
|
|
|
|
|
DESCRIPTION = """\ |
|
# <center> EXAONE 3.5: Series of Large Language Models for Real-world Use Cases </center> |
|
|
|
##### <center> We hope EXAONE continues to advance Expert AI with its effectiveness and bilingual skills. </center> |
|
|
|
<center>π For more details, please check <a href=https://huggingface.co/collections/LGAI-EXAONE/exaone-35-674d0e1bb3dcd2ab6f39dbb4>EXAONE-3.5 collections</a>, <a href=https://www.lgresearch.ai/blog/view?seq=507>our blog</a> or <a href=https://arxiv.org/abs/2412.04862>technical report</a></center> |
|
|
|
#### <center> EXAONE-3.5-32B-Instruct Demo Coming Soon.. </center> |
|
""" |
|
|
|
|
|
EXAMPLES = [ |
|
["Explain how wonderful you are"], |
|
["μ€μ€λ‘λ₯Ό μλν΄ λ΄"], |
|
] |
|
BOT_AVATAR = "EXAONE_logo.png" |
|
selected_model = gr.Radio(value="https://jps6tfdq34ydttbh.us-east4.gcp.endpoints.huggingface.cloud",visible=False) |
|
ADDITIONAL_INPUTS = [ |
|
gr.Textbox( |
|
value="You are EXAONE model from LG AI Research, a helpful assistant.", |
|
label="System Prompt", |
|
render=False, |
|
), |
|
gr.Slider( |
|
label="Max new tokens", |
|
minimum=1, |
|
maximum=MAX_NEW_TOKENS, |
|
step=1, |
|
value=DEFAULT_MAX_NEW_TOKENS, |
|
), |
|
gr.Slider( |
|
label="Temperature", |
|
minimum=0.1, |
|
maximum=2.0, |
|
step=0.1, |
|
value=0.7, |
|
), |
|
gr.Slider( |
|
label="Top-p (nucleus sampling)", |
|
minimum=0.05, |
|
maximum=1.0, |
|
step=0.05, |
|
value=0.9, |
|
), |
|
gr.Slider( |
|
label="Top-k", |
|
minimum=1, |
|
maximum=1000, |
|
step=1, |
|
value=1, |
|
), |
|
selected_model |
|
] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct") |
|
|
|
def generate( |
|
message: str, |
|
chat_history: list[tuple[str, str]], |
|
system_prompt: str, |
|
max_new_tokens: int = 512, |
|
temperature: float = 0.6, |
|
top_p: float = 0.9, |
|
top_k: int = 50, |
|
selected_model: str = "https://jps6tfdq34ydttbh.us-east4.gcp.endpoints.huggingface.cloud", |
|
) -> Iterator[str]: |
|
print(f'model: {selected_model}') |
|
messages = [{"role":"system","content": system_prompt}] |
|
print(f'message: {message}') |
|
print(f'chat_history: {chat_history}') |
|
for user, assistant in chat_history: |
|
messages.extend( |
|
[ |
|
{"role": "user", "content": user}, |
|
{"role": "assistant", "content": assistant}, |
|
] |
|
) |
|
messages.append({"role": "user", "content": message}) |
|
|
|
input_ids = tokenizer.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
return_tensors="pt" |
|
) |
|
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: |
|
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] |
|
gr.Warning(f"Trimmed input from messages as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") |
|
|
|
messages = tokenizer.decode(input_ids[0]) |
|
|
|
client = InferenceClient(selected_model, token=HF_TOKEN) |
|
|
|
gen_kwargs = dict( |
|
max_new_tokens=max_new_tokens, |
|
top_p=top_p, |
|
top_k=top_k, |
|
temperature=temperature, |
|
stop=["[|endofturn|]"] |
|
) |
|
|
|
output = client.text_generation(messages, **gen_kwargs) |
|
|
|
return output |
|
|
|
|
|
def radio1_change(model_size): |
|
return f"<center><font size=5>EXAONE-3.5-{model_size}-instruct</center>" |
|
|
|
|
|
def choices_model(model_size): |
|
endpoint_url_dict = { |
|
"2.4B": "https://jps6tfdq34ydttbh.us-east4.gcp.endpoints.huggingface.cloud", |
|
"7.8B": "https://wafz6im0d595g715.us-east-1.aws.endpoints.huggingface.cloud", |
|
} |
|
return endpoint_url_dict[model_size] |
|
|
|
|
|
chat_interface = gr.ChatInterface( |
|
fn=generate, |
|
chatbot=gr.Chatbot( |
|
label="EXAONE-3.5-Instruct", |
|
avatar_images=[None, BOT_AVATAR], |
|
layout="bubble", |
|
bubble_full_width=False |
|
), |
|
additional_inputs=ADDITIONAL_INPUTS, |
|
stop_btn=None, |
|
examples=EXAMPLES, |
|
cache_examples=False, |
|
) |
|
|
|
|
|
with gr.Blocks(fill_height=True) as demo: |
|
gr.Markdown("""<p align="center"><img src="https://huggingface.co/spaces/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct-Demo/resolve/main/EXAONE_Symbol%2BBI_3d.png" style="margin-right: 20px; height: 50px"/><p>""") |
|
gr.Markdown(DESCRIPTION) |
|
|
|
markdown = gr.Markdown("<center><font size=5>EXAONE-3.5-2.4B-instruct</center>") |
|
with gr.Row(): |
|
model_size = ["2.4B", "7.8B"] |
|
radio1 = gr.Radio(choices=model_size, label="EXAONE-3.5-Instruct", value=model_size[0]) |
|
|
|
radio1.change(radio1_change, inputs=radio1, outputs=markdown) |
|
radio1.change(choices_model, inputs=radio1, outputs=selected_model) |
|
chat_interface.render() |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=25).launch() |