File size: 5,504 Bytes
b878745
 
 
3f51327
b878745
3f51327
b878745
 
 
 
 
 
 
3f51327
ca211ea
b878745
 
 
 
4a17310
e1d89e6
b878745
c884652
 
b878745
3f51327
3e57df9
ca211ea
 
 
3f51327
ca211ea
3f51327
 
 
 
 
 
 
 
e1d89e6
b878745
3f51327
2bbfd62
4a17310
2bbfd62
 
1bbb83d
2bbfd62
1bbb83d
 
 
 
 
b878745
c884652
2bbfd62
c884652
 
 
 
 
b878745
edbb580
c884652
 
4a17310
 
a1b1b7f
e1d89e6
b878745
 
e436a2e
 
dc26248
 
 
b878745
dc26248
 
ceb1369
 
e436a2e
b878745
 
 
 
2bbfd62
b878745
 
 
e1d89e6
b878745
 
 
 
e1d89e6
b878745
 
3f51327
 
e1d89e6
3f51327
1bbb83d
2bbfd62
3f51327
 
 
1bbb83d
 
3f51327
 
3e57df9
1bbb83d
 
 
 
 
3e57df9
b878745
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#############################################################################################################################
# Filename   : app.py
# Description: A Streamlit application to detect facial expressions from images and provide responses.
# Author     : Lucas Yao
#
# Copyright © 2024 by Lucas Yao
#############################################################################################################################

# Import libraries.
import os  # Load environment variable(s).
import streamlit as st  # Build the GUI of the application.
from PIL import Image  # Handle image operations.
from dotenv import load_dotenv  # Load environment variables.
from fer import FER  # Import the FER model for facial expression recognition.
import numpy as np  # Import NumPy for array handling
import openai  # OpenAI API for generating text responses.

#############################################################################################################################
# Load environment variable(s).
load_dotenv()

# Set up OpenAI API key.
openai.api_key = os.getenv('OPENAI_API_KEY')

#############################################################################################################################
# Function to query the facial expression recognition model using FER.
def query_emotion(image):
    # Convert the PIL Image to a NumPy array
    image_np = np.array(image)

    detector = FER()
    emotions = detector.detect_emotions(image_np)
    
    if emotions:
        # Get the emotion with the highest score.
        dominant_emotion = max(emotions[0]['emotions'], key=emotions[0]['emotions'].get)
        return dominant_emotion
    else:
        st.error("Could not detect any emotion.")
        return None

#############################################################################################################################
# Function to generate a response using OpenAI based on detected emotion.
def generate_text_based_on_mood(emotion, response_type):
    try:
        if response_type == "Joke":
            prompt = f"Generate a light-hearted joke for someone who is feeling {emotion}."
        elif response_type == "Motivational Message":
            prompt = f"Generate a motivational message for someone who is feeling {emotion}."
        elif response_type == "Compliment":
            prompt = f"Generate a heartfelt compliment for someone who is feeling {emotion}."
        elif response_type == "Song Recommendation":
            prompt = f"Recommend a song that would suit someone who is feeling {emotion}. Include the song title and artist."

        # Call OpenAI's API using GPT-4.
        response = openai.ChatCompletion.create(
            model="gpt-4",  # Specify the GPT-4 model
            messages=[
                {"role": "user", "content": prompt}
            ]
        )

        # Extract the generated text.
        generated_text = response['choices'][0]['message']['content']
        return generated_text.strip()

    except Exception as e:
        st.error(f"Error generating text: {e}")
        return "Sorry, I couldn't come up with a message at this moment."

#############################################################################################################################
# Function to convert text to speech using gTTS.
def text_to_speech(text):
    from gtts import gTTS
    try:
        tts = gTTS(text, lang='en')
        audio_file = "output.mp3"
        tts.save(audio_file)  # Save the audio file.
        return audio_file
    except Exception as e:
        st.error(f"Error with TTS: {e}")
        return None

#############################################################################################################################
# Main function to create the Streamlit web application.
def main():
    st.title("Facial Expression Mood Detector")
    st.write("Upload an image of a face to detect mood and receive a response.")

    # Upload image.
    uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])

    if uploaded_file is not None:
        # Load and display the image.
        image = Image.open(uploaded_file)
        st.image(image, caption='Uploaded Image', use_column_width=True)

        # Detect facial expression.
        emotion = query_emotion(image)
        if emotion:
            st.write(f"Detected emotion: {emotion}")

            # Dropdown for selecting response type.
            response_type = st.selectbox("Select the type of response:", ["Joke", "Motivational Message", "Compliment", "Song Recommendation"])

            # Generate text based on detected emotion and user preference.
            if st.button("Get Response"):
                message = generate_text_based_on_mood(emotion, response_type)
                
                # Display the generated message (song recommendation or other response)
                st.write("Here's your response:")
                st.write(message)

                # Convert the generated message to audio if it's not a song recommendation (optional)
                if response_type != "Song Recommendation":
                    audio_file = text_to_speech(message)
                    if audio_file:
                        st.audio(audio_file)  # Streamlit will handle playback.

#############################################################################################################################
# Run the application.
if __name__ == "__main__":
    main()