GEMRec-Gallery / Archive /Gallery_beta0920.py
Ricercar's picture
add new backup
fb1a1d0
raw
history blame
32.9 kB
import json
import os
import requests
import altair as alt
import extra_streamlit_components as stx
import numpy as np
import pandas as pd
import streamlit as st
import streamlit.components.v1 as components
from bs4 import BeautifulSoup
from datasets import load_dataset, Dataset, load_from_disk
from huggingface_hub import login
from streamlit_agraph import agraph, Node, Edge, Config
from streamlit_extras.switch_page_button import switch_page
from streamlit_extras.no_default_selectbox import selectbox
from sklearn.svm import LinearSVC
SCORE_NAME_MAPPING = {'clip': 'clip_score', 'rank': 'msq_score', 'pop': 'model_download_count'}
class GalleryApp:
def __init__(self, promptBook, images_ds):
self.promptBook = promptBook
self.images_ds = images_ds
# init gallery state
if 'gallery_state' not in st.session_state:
st.session_state.gallery_state = {}
# initialize selected_dict
if 'selected_dict' not in st.session_state:
st.session_state['selected_dict'] = {}
if 'gallery_focus' not in st.session_state:
st.session_state.gallery_focus = {'tag': None, 'prompt': None}
def gallery_standard(self, items, col_num, info):
rows = len(items) // col_num + 1
containers = [st.container() for _ in range(rows)]
for idx in range(0, len(items), col_num):
row_idx = idx // col_num
with containers[row_idx]:
cols = st.columns(col_num)
for j in range(col_num):
if idx + j < len(items):
with cols[j]:
# show image
# image = self.images_ds[items.iloc[idx + j]['row_idx'].item()]['image']
image = f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{items.iloc[idx + j]['image_id']}.png"
st.image(image, use_column_width=True)
# handel checkbox information
prompt_id = items.iloc[idx + j]['prompt_id']
modelVersion_id = items.iloc[idx + j]['modelVersion_id']
check_init = True if modelVersion_id in st.session_state.selected_dict.get(prompt_id, []) else False
# st.write("Position: ", idx + j)
# show checkbox
st.checkbox('Select', key=f'select_{prompt_id}_{modelVersion_id}', value=check_init)
# show selected info
for key in info:
st.write(f"**{key}**: {items.iloc[idx + j][key]}")
def gallery_graph(self, items):
items = load_tsne_coordinates(items)
# sort items to be popularity from low to high, so that most popular ones will be on the top
items = items.sort_values(by=['model_download_count'], ascending=True).reset_index(drop=True)
scale = 50
items.loc[:, 'x'] = items['x'] * scale
items.loc[:, 'y'] = items['y'] * scale
nodes = []
edges = []
for idx in items.index:
# if items.loc[idx, 'modelVersion_id'] in st.session_state.selected_dict.get(items.loc[idx, 'prompt_id'], 0):
# opacity = 0.2
# else:
# opacity = 1.0
nodes.append(Node(id=items.loc[idx, 'image_id'],
# label=str(items.loc[idx, 'model_name']),
title=f"model name: {items.loc[idx, 'model_name']}\nmodelVersion name: {items.loc[idx, 'modelVersion_name']}\nclip score: {items.loc[idx, 'clip_score']}\nmcos score: {items.loc[idx, 'mcos_score']}\npopularity: {items.loc[idx, 'model_download_count']}",
size=20,
shape='image',
image=f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{items.loc[idx, 'image_id']}.png",
x=items.loc[idx, 'x'].item(),
y=items.loc[idx, 'y'].item(),
# fixed=True,
color={'background': '#E0E0E1', 'border': '#ffffff', 'highlight': {'border': '#F04542'}},
# opacity=opacity,
shadow={'enabled': True, 'color': 'rgba(0,0,0,0.4)', 'size': 10, 'x': 1, 'y': 1},
borderWidth=2,
shapeProperties={'useBorderWithImage': True},
)
)
config = Config(width='100%',
height='600',
directed=True,
physics=False,
hierarchical=False,
interaction={'navigationButtons': True, 'dragNodes': False, 'multiselect': False},
# **kwargs
)
return agraph(nodes=nodes,
edges=edges,
config=config,
)
def selection_panel(self, items):
# temperal function
selecters = st.columns([1, 4])
if 'score_weights' not in st.session_state:
# st.session_state.score_weights = [1.0, 0.8, 0.2, 0.8]
st.session_state.score_weights = [1.0, 0.8, 0.2]
# select sort type
with selecters[0]:
sort_type = st.selectbox('Sort by', ['Scores', 'IDs and Names'])
if sort_type == 'Scores':
sort_by = 'weighted_score_sum'
# select other options
with selecters[1]:
if sort_type == 'IDs and Names':
sub_selecters = st.columns([3])
# select sort by
with sub_selecters[0]:
sort_by = st.selectbox('Sort by',
['model_name', 'model_id', 'modelVersion_name', 'modelVersion_id', 'norm_nsfw'],
label_visibility='hidden')
continue_idx = 1
else:
# add custom weights
sub_selecters = st.columns([1, 1, 1])
with sub_selecters[0]:
clip_weight = st.number_input('Clip Score Weight', min_value=-100.0, max_value=100.0, value=1.0, step=0.1, help='the weight for normalized clip score')
with sub_selecters[1]:
mcos_weight = st.number_input('Dissimilarity Weight', min_value=-100.0, max_value=100.0, value=0.8, step=0.1, help='the weight for m(eam) s(imilarity) q(antile) score for measuring distinctiveness')
with sub_selecters[2]:
pop_weight = st.number_input('Popularity Weight', min_value=-100.0, max_value=100.0, value=0.2, step=0.1, help='the weight for normalized popularity score')
items.loc[:, 'weighted_score_sum'] = round(items[f'norm_clip'] * clip_weight + items[f'norm_mcos'] * mcos_weight + items[
'norm_pop'] * pop_weight, 4)
continue_idx = 3
# save latest weights
st.session_state.score_weights[0] = round(clip_weight, 2)
st.session_state.score_weights[1] = round(mcos_weight, 2)
st.session_state.score_weights[2] = round(pop_weight, 2)
# # select threshold
# with sub_selecters[continue_idx]:
# nsfw_threshold = st.number_input('NSFW Score Threshold', min_value=0.0, max_value=1.0, value=0.8, step=0.01, help='Only show models with nsfw score lower than this threshold, set 1.0 to show all images')
# items = items[items['norm_nsfw'] <= nsfw_threshold].reset_index(drop=True)
#
# # save latest threshold
# st.session_state.score_weights[3] = nsfw_threshold
# # draw a distribution histogram
# if sort_type == 'Scores':
# try:
# with st.expander('Show score distribution histogram and select score range'):
# st.write('**Score distribution histogram**')
# chart_space = st.container()
# # st.write('Select the range of scores to show')
# hist_data = pd.DataFrame(items[sort_by])
# mini = hist_data[sort_by].min().item()
# mini = mini//0.1 * 0.1
# maxi = hist_data[sort_by].max().item()
# maxi = maxi//0.1 * 0.1 + 0.1
# st.write('**Select the range of scores to show**')
# r = st.slider('Select the range of scores to show', min_value=mini, max_value=maxi, value=(mini, maxi), step=0.05, label_visibility='collapsed')
# with chart_space:
# st.altair_chart(altair_histogram(hist_data, sort_by, r[0], r[1]), use_container_width=True)
# # event_dict = altair_component(altair_chart=altair_histogram(hist_data, sort_by))
# # r = event_dict.get(sort_by)
# if r:
# items = items[(items[sort_by] >= r[0]) & (items[sort_by] <= r[1])].reset_index(drop=True)
# # st.write(r)
# except:
# pass
display_options = st.columns([1, 4])
with display_options[0]:
# select order
order = st.selectbox('Order', ['Ascending', 'Descending'], index=1 if sort_type == 'Scores' else 0)
if order == 'Ascending':
order = True
else:
order = False
with display_options[1]:
# select info to show
info = st.multiselect('Show Info',
['model_name', 'model_id', 'modelVersion_name', 'modelVersion_id',
'weighted_score_sum', 'model_download_count', 'clip_score', 'mcos_score',
'nsfw_score', 'norm_nsfw'],
default=sort_by)
# apply sorting to dataframe
items = items.sort_values(by=[sort_by], ascending=order).reset_index(drop=True)
# select number of columns
col_num = st.slider('Number of columns', min_value=1, max_value=9, value=4, step=1, key='col_num')
return items, info, col_num
def sidebar(self, items, prompt_id, note):
with st.sidebar:
# prompt_tags = self.promptBook['tag'].unique()
# # sort tags by alphabetical order
# prompt_tags = np.sort(prompt_tags)[::1]
#
# tag = st.selectbox('Select a tag', prompt_tags, index=5)
#
# items = self.promptBook[self.promptBook['tag'] == tag].reset_index(drop=True)
#
# prompts = np.sort(items['prompt'].unique())[::1]
#
# selected_prompt = st.selectbox('Select prompt', prompts, index=3)
# mode = st.radio('Select a mode', ['Gallery', 'Graph'], horizontal=True, index=1)
# items = items[items['prompt'] == selected_prompt].reset_index(drop=True)
# st.title('Model Visualization and Retrieval')
# show source
if isinstance(note, str):
if note.isdigit():
st.caption(f"`Source: civitai`")
else:
st.caption(f"`Source: {note}`")
else:
st.caption("`Source: Parti-prompts`")
# show image metadata
image_metadatas = ['prompt', 'negativePrompt', 'sampler', 'cfgScale', 'size', 'seed']
for key in image_metadatas:
label = ' '.join(key.split('_')).capitalize()
st.write(f"**{label}**")
if items[key][0] == ' ':
st.write('`None`')
else:
st.caption(f"{items[key][0]}")
# for note as civitai image id, add civitai reference
if isinstance(note, str) and note.isdigit():
try:
st.write(f'**[Civitai Reference](https://civitai.com/images/{note})**')
res = requests.get(f'https://civitai.com/images/{note}')
# st.write(res.text)
soup = BeautifulSoup(res.text, 'html.parser')
image_section = soup.find('div', {'class': 'mantine-12rlksp'})
image_url = image_section.find('img')['src']
st.image(image_url, use_column_width=True)
except:
pass
# return prompt_tags, tag, prompt_id, items
def app(self):
st.write('### Model Visualization and Retrieval')
# st.write('This is a gallery of images generated by the models')
# build the tabular view
prompt_tags = self.promptBook['tag'].unique()
# sort tags by alphabetical order
prompt_tags = np.sort(prompt_tags)[::1].tolist()
# chosen_data = [stx.TabBarItemData(id=tag, title=tag, description='') for tag in prompt_tags]
# tag = stx.tab_bar(chosen_data, key='tag', default='food')
# save tag to session state on change
tag = st.radio('Select a tag', prompt_tags, index=5, horizontal=True, key='tag', label_visibility='collapsed')
# tabs = st.tabs(prompt_tags)
# for i in range(len(prompt_tags)):
# with tabs[i]:
# tag = prompt_tags[i]
items = self.promptBook[self.promptBook['tag'] == tag].reset_index(drop=True)
prompts = np.sort(items['prompt'].unique())[::1].tolist()
# st.caption('Select a prompt')
subset_selector = st.columns([3, 1])
with subset_selector[0]:
selected_prompt = selectbox('Select prompt', prompts, key=f'prompt_{tag}', no_selection_label='---', label_visibility='collapsed', index=0)
# st.session_state.prompt_idx_last_time = prompts.index(selected_prompt) if selected_prompt else 0
if selected_prompt is None:
# st.markdown(':orange[Please select a prompt above👆]')
st.write('**Feel free to navigate among tags and pages! Your selection will be saved within one log-in session.**')
with subset_selector[-1]:
st.write(':orange[👈 **Please select a prompt**]')
else:
items = items[items['prompt'] == selected_prompt].reset_index(drop=True)
prompt_id = items['prompt_id'].unique()[0]
note = items['note'].unique()[0]
# add state to session state
if prompt_id not in st.session_state.gallery_state:
st.session_state.gallery_state[prompt_id] = 'graph'
# add focus to session state
st.session_state.gallery_focus['tag'] = tag
st.session_state.gallery_focus['prompt'] = selected_prompt
# add safety check for some prompts
safety_check = True
# load unsafe prompts
unsafe_prompts = json.load(open('./data/unsafe_prompts.json', 'r'))
for prompt_tag in prompt_tags:
if prompt_tag not in unsafe_prompts:
unsafe_prompts[prompt_tag] = []
# # manually add unsafe prompts
# unsafe_prompts['world knowledge'] = [83]
# unsafe_prompts['abstract'] = [1, 3]
if int(prompt_id.item()) in unsafe_prompts[tag]:
st.warning('This prompt may contain unsafe content. They might be offensive, depressing, or sexual.')
safety_check = st.checkbox('I understand that this prompt may contain unsafe content. Show these images anyway.', key=f'safety_{prompt_id}')
print('current state: ', st.session_state.gallery_state[prompt_id])
if st.session_state.gallery_state[prompt_id] == 'graph':
if safety_check:
self.graph_mode(prompt_id, items)
with subset_selector[-1]:
has_selection = False
try:
if len(st.session_state.selected_dict.get(prompt_id, [])) > 0:
has_selection = True
except:
pass
if has_selection:
checkout = st.button('Check out selections', use_container_width=True, type='primary')
if checkout:
print('checkout')
st.session_state.gallery_state[prompt_id] = 'gallery'
print(st.session_state.gallery_state[prompt_id])
st.experimental_rerun()
else:
st.write(':orange[👇 **Select images you like below**]')
elif st.session_state.gallery_state[prompt_id] == 'gallery':
items = items[items['modelVersion_id'].isin(st.session_state.selected_dict[prompt_id])].reset_index(
drop=True)
self.gallery_mode(prompt_id, items)
with subset_selector[-1]:
state_operations = st.columns([1, 1])
with state_operations[0]:
back = st.button('Back to 🖼️', use_container_width=True)
if back:
st.session_state.gallery_state[prompt_id] = 'graph'
st.experimental_rerun()
with state_operations[1]:
forward = st.button('Check out', use_container_width=True, type='primary', on_click=self.submit_actions, args=('Continue', prompt_id))
if forward:
switch_page('ranking')
try:
self.sidebar(items, prompt_id, note)
except:
pass
def graph_mode(self, prompt_id, items):
graph_cols = st.columns([3, 1])
# prompt = st.chat_input(f"Selected model version ids: {str(st.session_state.selected_dict.get(prompt_id, []))}",
# disabled=False, key=f'{prompt_id}')
# if prompt:
# switch_page("ranking")
with graph_cols[0]:
graph_space = st.empty()
with graph_space.container():
return_value = self.gallery_graph(items)
with graph_cols[1]:
if return_value:
with st.form(key=f'{prompt_id}'):
image_url = f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{return_value}.png"
st.image(image_url)
item = items[items['image_id'] == return_value].reset_index(drop=True).iloc[0]
modelVersion_id = item['modelVersion_id']
# handle selection
if 'selected_dict' in st.session_state:
if item['prompt_id'] not in st.session_state.selected_dict:
st.session_state.selected_dict[item['prompt_id']] = []
if modelVersion_id in st.session_state.selected_dict[item['prompt_id']]:
checked = True
else:
checked = False
if checked:
# deselect = st.button('Deselect', key=f'select_{item["prompt_id"]}_{item["modelVersion_id"]}', use_container_width=True)
deselect = st.form_submit_button('Deselect', use_container_width=True)
if deselect:
st.session_state.selected_dict[item['prompt_id']].remove(item['modelVersion_id'])
self.remove_ranking_states(item['prompt_id'])
st.experimental_rerun()
else:
# select = st.button('Select', key=f'select_{item["prompt_id"]}_{item["modelVersion_id"]}', use_container_width=True, type='primary')
select = st.form_submit_button('Select', use_container_width=True, type='primary')
if select:
st.session_state.selected_dict[item['prompt_id']].append(item['modelVersion_id'])
self.remove_ranking_states(item['prompt_id'])
st.experimental_rerun()
# st.write(item)
infos = ['model_name', 'modelVersion_name', 'model_download_count', 'clip_score', 'mcos_score',
'nsfw_score']
infos_df = item[infos]
# rename columns
infos_df = infos_df.rename(index={'model_name': 'Model', 'modelVersion_name': 'Version', 'model_download_count': 'Downloads', 'clip_score': 'Clip Score', 'mcos_score': 'mcos Score', 'nsfw_score': 'NSFW Score'})
st.table(infos_df)
# for info in infos:
# st.write(f"**{info}**:")
# st.write(item[info])
else:
st.info('Please click on an image to show')
def gallery_mode(self, prompt_id, items):
items, info, col_num = self.selection_panel(items)
# if 'selected_dict' in st.session_state:
# # st.write('checked: ', str(st.session_state.selected_dict.get(prompt_id, [])))
# dynamic_weight_options = ['Grid Search', 'SVM', 'Greedy']
# dynamic_weight_panel = st.columns(len(dynamic_weight_options))
#
# if len(st.session_state.selected_dict.get(prompt_id, [])) > 0:
# btn_disable = False
# else:
# btn_disable = True
#
# for i in range(len(dynamic_weight_options)):
# method = dynamic_weight_options[i]
# with dynamic_weight_panel[i]:
# btn = st.button(method, use_container_width=True, disabled=btn_disable, on_click=self.dynamic_weight, args=(prompt_id, items, method))
# prompt = st.chat_input(f"Selected model version ids: {str(st.session_state.selected_dict.get(prompt_id, []))}", disabled=False, key=f'{prompt_id}')
# if prompt:
# switch_page("ranking")
# with st.form(key=f'{prompt_id}'):
# buttons = st.columns([1, 1, 1])
# buttons_space = st.columns([1, 1, 1])
gallery_space = st.empty()
# with buttons_space[0]:
# continue_btn = st.button('Proceed selections to ranking', use_container_width=True, type='primary')
# if continue_btn:
# # self.submit_actions('Continue', prompt_id)
# switch_page("ranking")
#
# with buttons_space[1]:
# deselect_btn = st.button('Deselect All', use_container_width=True)
# if deselect_btn:
# self.submit_actions('Deselect', prompt_id)
#
# with buttons_space[2]:
# refresh_btn = st.button('Refresh', on_click=gallery_space.empty, use_container_width=True)
with gallery_space.container():
self.gallery_standard(items, col_num, info)
def submit_actions(self, status, prompt_id):
# remove counter from session state
# st.session_state.pop('counter', None)
self.remove_ranking_states('prompt_id')
if status == 'Select':
modelVersions = self.promptBook[self.promptBook['prompt_id'] == prompt_id]['modelVersion_id'].unique()
st.session_state.selected_dict[prompt_id] = modelVersions.tolist()
print(st.session_state.selected_dict, 'select')
st.experimental_rerun()
elif status == 'Deselect':
st.session_state.selected_dict[prompt_id] = []
print(st.session_state.selected_dict, 'deselect')
st.experimental_rerun()
# self.promptBook.loc[self.promptBook['prompt_id'] == prompt_id, 'checked'] = False
elif status == 'Continue':
st.session_state.selected_dict[prompt_id] = []
for key in st.session_state:
keys = key.split('_')
if keys[0] == 'select' and keys[1] == str(prompt_id):
if st.session_state[key]:
st.session_state.selected_dict[prompt_id].append(int(keys[2]))
# switch_page("ranking")
print(st.session_state.selected_dict, 'continue')
# st.experimental_rerun()
def dynamic_weight(self, prompt_id, items, method='Grid Search'):
selected = items[
items['modelVersion_id'].isin(st.session_state.selected_dict[prompt_id])].reset_index(drop=True)
optimal_weight = [0, 0, 0]
if method == 'Grid Search':
# grid search method
top_ranking = len(items) * len(selected)
for clip_weight in np.arange(-1, 1, 0.1):
for mcos_weight in np.arange(-1, 1, 0.1):
for pop_weight in np.arange(-1, 1, 0.1):
weight_all = clip_weight*items[f'norm_clip'] + mcos_weight*items[f'norm_mcos'] + pop_weight*items['norm_pop']
weight_all_sorted = weight_all.sort_values(ascending=False).reset_index(drop=True)
# print('weight_all_sorted:', weight_all_sorted)
weight_selected = clip_weight*selected[f'norm_clip'] + mcos_weight*selected[f'norm_mcos'] + pop_weight*selected['norm_pop']
# get the index of values of weight_selected in weight_all_sorted
rankings = []
for weight in weight_selected:
rankings.append(weight_all_sorted.index[weight_all_sorted == weight].tolist()[0])
if sum(rankings) <= top_ranking:
top_ranking = sum(rankings)
print('current top ranking:', top_ranking, rankings)
optimal_weight = [clip_weight, mcos_weight, pop_weight]
print('optimal weight:', optimal_weight)
elif method == 'SVM':
# svm method
print('start svm method')
# get residual dataframe that contains models not selected
residual = items[~items['modelVersion_id'].isin(selected['modelVersion_id'])].reset_index(drop=True)
residual = residual[['norm_clip_crop', 'norm_mcos_crop', 'norm_pop']]
residual = residual.to_numpy()
selected = selected[['norm_clip_crop', 'norm_mcos_crop', 'norm_pop']]
selected = selected.to_numpy()
y = np.concatenate((np.full((len(selected), 1), -1), np.full((len(residual), 1), 1)), axis=0).ravel()
X = np.concatenate((selected, residual), axis=0)
# fit svm model, and get parameters for the hyperplane
clf = LinearSVC(random_state=0, C=1.0, fit_intercept=False, dual='auto')
clf.fit(X, y)
optimal_weight = clf.coef_[0].tolist()
print('optimal weight:', optimal_weight)
pass
elif method == 'Greedy':
for idx in selected.index:
# find which score is the highest, clip, mcos, or pop
clip_score = selected.loc[idx, 'norm_clip_crop']
mcos_score = selected.loc[idx, 'norm_mcos_crop']
pop_score = selected.loc[idx, 'norm_pop']
if clip_score >= mcos_score and clip_score >= pop_score:
optimal_weight[0] += 1
elif mcos_score >= clip_score and mcos_score >= pop_score:
optimal_weight[1] += 1
elif pop_score >= clip_score and pop_score >= mcos_score:
optimal_weight[2] += 1
# normalize optimal_weight
optimal_weight = [round(weight/len(selected), 2) for weight in optimal_weight]
print('optimal weight:', optimal_weight)
print('optimal weight:', optimal_weight)
st.session_state.score_weights[0: 3] = optimal_weight
def remove_ranking_states(self, prompt_id):
# for drag sort
try:
st.session_state.counter[prompt_id] = 0
st.session_state.ranking[prompt_id] = {}
print('remove ranking states')
except:
print('no sort ranking states to remove')
# for battles
try:
st.session_state.pointer[prompt_id] = {'left': 0, 'right': 1}
print('remove battles states')
except:
print('no battles states to remove')
# for page progress
try:
st.session_state.progress[prompt_id] = 'ranking'
print('reset page progress states')
except:
print('no page progress states to be reset')
# hist_data = pd.DataFrame(np.random.normal(42, 10, (200, 1)), columns=["x"])
@st.cache_resource
def altair_histogram(hist_data, sort_by, mini, maxi):
brushed = alt.selection_interval(encodings=['x'], name="brushed")
chart = (
alt.Chart(hist_data)
.mark_bar(opacity=0.7, cornerRadius=2)
.encode(alt.X(f"{sort_by}:Q", bin=alt.Bin(maxbins=25)), y="count()")
# .add_selection(brushed)
# .properties(width=800, height=300)
)
# Create a transparent rectangle for highlighting the range
highlight = (
alt.Chart(pd.DataFrame({'x1': [mini], 'x2': [maxi]}))
.mark_rect(opacity=0.3)
.encode(x='x1', x2='x2')
# .properties(width=800, height=300)
)
# Layer the chart and the highlight rectangle
layered_chart = alt.layer(chart, highlight)
return layered_chart
@st.cache_data
def load_hf_dataset(show_NSFW=False):
# login to huggingface
login(token=os.environ.get("HF_TOKEN"))
# load from huggingface
roster = pd.DataFrame(load_dataset('MAPS-research/GEMRec-Roster', split='train'))
promptBook = pd.DataFrame(load_dataset('MAPS-research/GEMRec-Metadata', split='train'))
# images_ds = load_from_disk(os.path.join(os.getcwd(), 'data', 'promptbook'))
images_ds = None # set to None for now since we use s3 bucket to store images
# # process dataset
# roster = roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name',
# 'model_download_count']].drop_duplicates().reset_index(drop=True)
# add 'custom_score_weights' column to promptBook if not exist
if 'weighted_score_sum' not in promptBook.columns:
promptBook.loc[:, 'weighted_score_sum'] = 0
# merge roster and promptbook
promptBook = promptBook.merge(roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name', 'model_download_count']],
on=['model_id', 'modelVersion_id'], how='left')
# add column to record current row index
promptBook.loc[:, 'row_idx'] = promptBook.index
# apply a nsfw filter
if not show_NSFW:
promptBook = promptBook[promptBook['norm_nsfw'] <= 0.8].reset_index(drop=True)
print('nsfw filter applied', len(promptBook))
# add a column that adds up 'norm_clip', 'norm_mcos', and 'norm_pop'
score_weights = [1.0, 0.8, 0.2]
promptBook.loc[:, 'total_score'] = round(promptBook['norm_clip'] * score_weights[0] + promptBook['norm_mcos'] * score_weights[1] + promptBook['norm_pop'] * score_weights[2], 4)
return roster, promptBook, images_ds
@st.cache_data
def load_tsne_coordinates(items):
# load tsne coordinates
tsne_df = pd.read_parquet('./data/feats_tsne.parquet')
# print(tsne_df['modelVersion_id'].dtype)
# print('before merge:', items)
items = items.merge(tsne_df, on=['modelVersion_id', 'prompt_id'], how='left')
# print('after merge:', items)
return items
if __name__ == "__main__":
st.set_page_config(page_title="Model Coffer Gallery", page_icon="🖼️", layout="wide")
if 'user_id' not in st.session_state:
st.warning('Please log in first.')
home_btn = st.button('Go to Home Page')
if home_btn:
switch_page("home")
else:
# st.write('You have already logged in as ' + st.session_state.user_id[0])
roster, promptBook, images_ds = load_hf_dataset(st.session_state.show_NSFW)
# print(promptBook.columns)
# # initialize selected_dict
# if 'selected_dict' not in st.session_state:
# st.session_state['selected_dict'] = {}
app = GalleryApp(promptBook=promptBook, images_ds=images_ds)
app.app()
with open('./css/style.css') as f:
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)