PacmanAI-2 / main.py
Marroco93's picture
no message
1b8c3e7
import re
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from huggingface_hub import InferenceClient
import uvicorn
from typing import Generator, List
import json # Asegúrate de que esta línea esté al principio del archivo
import nltk
import os
import google.protobuf # This line should execute without errors if protobuf is installed correctly
import sentencepiece
from transformers import pipeline, AutoTokenizer,AutoModelForSequenceClassification,AutoModel
import spacy
import numpy as np
import torch
nltk.data.path.append(os.getenv('NLTK_DATA'))
app = FastAPI()
# Initialize the InferenceClient with your model
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
class Item(BaseModel):
prompt: str
history: list
system_prompt: str
temperature: float = 0.8
max_new_tokens: int = 4000
top_p: float = 0.15
repetition_penalty: float = 1.0
def format_prompt(current_prompt, history):
formatted_history = "<s>"
for entry in history:
if entry["role"] == "user":
formatted_history += f"[USER] {entry['content']} [/USER]"
elif entry["role"] == "assistant":
formatted_history += f"[ASSISTANT] {entry['content']} [/ASSISTANT]"
formatted_history += f"[USER] {current_prompt} [/USER]</s>"
return formatted_history
def generate_stream(item: Item) -> Generator[bytes, None, None]:
formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history)
# Estimate token count for the formatted_prompt
input_token_count = len(nltk.word_tokenize(formatted_prompt)) # NLTK tokenization
# Ensure total token count doesn't exceed the maximum limit
max_tokens_allowed = 32768
max_new_tokens_adjusted = max(1, min(item.max_new_tokens, max_tokens_allowed - input_token_count))
generate_kwargs = {
"temperature": item.temperature,
"max_new_tokens": max_new_tokens_adjusted,
"top_p": item.top_p,
"repetition_penalty": item.repetition_penalty,
"do_sample": True,
"seed": 42,
}
# Stream the response from the InferenceClient
for response in client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True):
# This assumes 'details=True' gives you a structure where you can access the text like this
chunk = {
"text": response.token.text,
"complete": response.generated_text is not None # Adjust based on how you detect completion
}
yield json.dumps(chunk).encode("utf-8") + b"\n"
class SummarizeRequest(BaseModel):
text: str
@app.post("/generate/")
async def generate_text(item: Item):
# Stream response back to the client
return StreamingResponse(generate_stream(item), media_type="application/x-ndjson")
# Define request model
class TextRequest(BaseModel):
text: str # Single string of long text
# Load Longformer model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")
model = AutoModel.from_pretrained("allenai/longformer-base-4096")
# Endpoint to process the document and return embeddings
@app.post("/process_document")
async def process_document(request: TextRequest):
try:
# Split the text into segments that fit within the model's max input size
max_length = 4096 # Maximum token length for Longformer
words = request.text.split()
tokens = tokenizer.encode(request.text, add_special_tokens=True)
input_ids = []
current_chunk = []
for token in tokens:
if len(current_chunk) + len(tokenizer.convert_ids_to_tokens([token])) < max_length:
current_chunk.append(token)
else:
input_ids.append(current_chunk)
current_chunk = [token]
if current_chunk:
input_ids.append(current_chunk) # Add the last chunk if any
# Generate embeddings for each segment
embeddings_list = []
for ids in input_ids:
inputs = {'input_ids': torch.tensor(ids).unsqueeze(0)} # Batch size 1
outputs = model(**inputs)
embeddings = outputs.last_hidden_state.mean(dim=1).detach().numpy()
embeddings_list.append(embeddings.tolist()) # Store embeddings for each segment
return {
"embeddings": embeddings_list
}
except Exception as e:
print(f"Error during document processing: {e}")
raise HTTPException(status_code=500, detail=str(e))
# @app.post("/summarize")
# async def summarize(request: TextRequest):
# try:
# # Preprocess and segment the text
# processed_text = preprocess_text(request.text)
# segments = segment_text(processed_text)
# # Classify each segment safely
# classified_segments = []
# for segment in segments:
# try:
# result = classifier(segment)
# classified_segments.append(result)
# except Exception as e:
# print(f"Error classifying segment: {e}")
# classified_segments.append({"error": str(e)})
# # Optional: Reduce tokens or summarize
# reduced_texts = []
# for segment in segments:
# try:
# reduced_text, token_count = reduce_tokens(segment)
# reduced_texts.append((reduced_text, token_count))
# except Exception as e:
# print(f"Error during token reduction: {e}")
# reduced_texts.append(("Error", 0))
# return {
# "classified_segments": classified_segments,
# "reduced_texts": reduced_texts
# }
# except Exception as e:
# print(f"Error during token reduction: {e}")
# raise HTTPException(status_code=500, detail=str(e))
# if __name__ == "__main__":
# uvicorn.run(app, host="0.0.0.0", port=8000)