Spaces:
Sleeping
Sleeping
File size: 6,048 Bytes
44cdc71 c108da3 caa64e7 c108da3 f84e083 bcee5ff c108da3 7a31970 4849bdc 506bda4 04ac801 10d17a3 8737454 10d17a3 1b8c3e7 4849bdc c108da3 4849bdc f84e083 ce8dee8 d0435f3 f12ecf0 1667997 f84e083 e40242b 6b74d17 f84e083 1667997 c108da3 9441c54 c108da3 1667997 9441c54 1667997 9441c54 1667997 9441c54 c108da3 9441c54 c108da3 d0c61b6 215f4a9 c108da3 215f4a9 d0c61b6 f84e083 1667997 f84e083 c108da3 9441c54 d0c61b6 bcee5ff 1b8c3e7 10d17a3 bcee5ff 1b8c3e7 3717137 1b8c3e7 fe81f5c 1b8c3e7 bcee5ff 1b8c3e7 bcee5ff fe81f5c bcee5ff fe81f5c b95f5d7 10d17a3 8737454 10d17a3 27153aa 10d17a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import re
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from huggingface_hub import InferenceClient
import uvicorn
from typing import Generator, List
import json # Asegúrate de que esta línea esté al principio del archivo
import nltk
import os
import google.protobuf # This line should execute without errors if protobuf is installed correctly
import sentencepiece
from transformers import pipeline, AutoTokenizer,AutoModelForSequenceClassification,AutoModel
import spacy
import numpy as np
import torch
nltk.data.path.append(os.getenv('NLTK_DATA'))
app = FastAPI()
# Initialize the InferenceClient with your model
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
class Item(BaseModel):
prompt: str
history: list
system_prompt: str
temperature: float = 0.8
max_new_tokens: int = 4000
top_p: float = 0.15
repetition_penalty: float = 1.0
def format_prompt(current_prompt, history):
formatted_history = "<s>"
for entry in history:
if entry["role"] == "user":
formatted_history += f"[USER] {entry['content']} [/USER]"
elif entry["role"] == "assistant":
formatted_history += f"[ASSISTANT] {entry['content']} [/ASSISTANT]"
formatted_history += f"[USER] {current_prompt} [/USER]</s>"
return formatted_history
def generate_stream(item: Item) -> Generator[bytes, None, None]:
formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history)
# Estimate token count for the formatted_prompt
input_token_count = len(nltk.word_tokenize(formatted_prompt)) # NLTK tokenization
# Ensure total token count doesn't exceed the maximum limit
max_tokens_allowed = 32768
max_new_tokens_adjusted = max(1, min(item.max_new_tokens, max_tokens_allowed - input_token_count))
generate_kwargs = {
"temperature": item.temperature,
"max_new_tokens": max_new_tokens_adjusted,
"top_p": item.top_p,
"repetition_penalty": item.repetition_penalty,
"do_sample": True,
"seed": 42,
}
# Stream the response from the InferenceClient
for response in client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True):
# This assumes 'details=True' gives you a structure where you can access the text like this
chunk = {
"text": response.token.text,
"complete": response.generated_text is not None # Adjust based on how you detect completion
}
yield json.dumps(chunk).encode("utf-8") + b"\n"
class SummarizeRequest(BaseModel):
text: str
@app.post("/generate/")
async def generate_text(item: Item):
# Stream response back to the client
return StreamingResponse(generate_stream(item), media_type="application/x-ndjson")
# Define request model
class TextRequest(BaseModel):
text: str # Single string of long text
# Load Longformer model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")
model = AutoModel.from_pretrained("allenai/longformer-base-4096")
# Endpoint to process the document and return embeddings
@app.post("/process_document")
async def process_document(request: TextRequest):
try:
# Split the text into segments that fit within the model's max input size
max_length = 4096 # Maximum token length for Longformer
words = request.text.split()
tokens = tokenizer.encode(request.text, add_special_tokens=True)
input_ids = []
current_chunk = []
for token in tokens:
if len(current_chunk) + len(tokenizer.convert_ids_to_tokens([token])) < max_length:
current_chunk.append(token)
else:
input_ids.append(current_chunk)
current_chunk = [token]
if current_chunk:
input_ids.append(current_chunk) # Add the last chunk if any
# Generate embeddings for each segment
embeddings_list = []
for ids in input_ids:
inputs = {'input_ids': torch.tensor(ids).unsqueeze(0)} # Batch size 1
outputs = model(**inputs)
embeddings = outputs.last_hidden_state.mean(dim=1).detach().numpy()
embeddings_list.append(embeddings.tolist()) # Store embeddings for each segment
return {
"embeddings": embeddings_list
}
except Exception as e:
print(f"Error during document processing: {e}")
raise HTTPException(status_code=500, detail=str(e))
# @app.post("/summarize")
# async def summarize(request: TextRequest):
# try:
# # Preprocess and segment the text
# processed_text = preprocess_text(request.text)
# segments = segment_text(processed_text)
# # Classify each segment safely
# classified_segments = []
# for segment in segments:
# try:
# result = classifier(segment)
# classified_segments.append(result)
# except Exception as e:
# print(f"Error classifying segment: {e}")
# classified_segments.append({"error": str(e)})
# # Optional: Reduce tokens or summarize
# reduced_texts = []
# for segment in segments:
# try:
# reduced_text, token_count = reduce_tokens(segment)
# reduced_texts.append((reduced_text, token_count))
# except Exception as e:
# print(f"Error during token reduction: {e}")
# reduced_texts.append(("Error", 0))
# return {
# "classified_segments": classified_segments,
# "reduced_texts": reduced_texts
# }
# except Exception as e:
# print(f"Error during token reduction: {e}")
# raise HTTPException(status_code=500, detail=str(e))
# if __name__ == "__main__":
# uvicorn.run(app, host="0.0.0.0", port=8000)
|