File size: 13,734 Bytes
9feb130 a383bc0 9feb130 f55a209 9feb130 ba2588f 9feb130 3a5b05e ba2588f 9feb130 b3a62f4 9feb130 b3a62f4 9feb130 c18b92f 9feb130 1c8bf4d 9feb130 c18b92f 9feb130 4ce9c48 9feb130 4ce9c48 389c968 9feb130 4ce9c48 9feb130 316436b 9feb130 c18b92f 9feb130 c18b92f 9bc4391 9feb130 7f12b65 9feb130 c18b92f 9feb130 c18b92f 9feb130 d3a6ca6 9feb130 d3a6ca6 9feb130 b3a62f4 9feb130 f55a209 9feb130 c18b92f 9feb130 c18b92f 9feb130 45d07a3 c18b92f 9feb130 c18b92f 9feb130 c18b92f 9feb130 b3a62f4 9feb130 c18b92f 9feb130 45d07a3 a383bc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import random
import os
from urllib.parse import urlencode
#from pyngrok import ngrok
import streamlit as st
import streamlit.components.v1 as components
import torch
from transformers import pipeline, set_seed
from transformers import AutoTokenizer, AutoModelForCausalLM
# #import torch
# print(f"Is CUDA available: {torch.cuda.is_available()}")
# # True
# print(
# f"CUDA device for you Perrito: {torch.cuda.get_device_name(torch.cuda.current_device())}")
# # Tesla T4
HF_AUTH_TOKEN = "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"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#print("DEVICE SENOOOOOR", DEVICE)
DTYPE = torch.float32 if DEVICE == "cpu" else torch.float16
MODEL_NAME = os.environ.get("MODEL_NAME", "NbAiLab/nb-gpt-j-6B-alpaca")
MAX_LENGTH = int(os.environ.get("MAX_LENGTH", 256))
HEADER_INFO = """
# GPT-NorPaca
Norwegian GPT-J-6B NorPaca Model.
""".strip()
LOGO = "https://upload.wikimedia.org/wikipedia/commons/thumb/1/19/Logo_CopenhagenBusinessSchool.svg/1200px-Logo_CopenhagenBusinessSchool.svg.png"
SIDEBAR_INFO = f"""
<div align=center>
<img src="{LOGO}" width=100/>
# NB-GPT-J-6B-NorPaca
</div>
NB-GPT-J-6B NorPaca is a hybrid of a GPT-3 and Llama model, trained on the Norwegian Colossal Corpus and other Internet sources. It is a 6.7 billion parameter model, and is the largest model in the GPT-J family.
This model has been trained with [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax) using TPUs provided by Google through the Tensor Research Cloud program, starting off the [GPT-J-6B model weigths from EleutherAI](https://huggingface.co/EleutherAI/gpt-j-6B), and trained on the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC) and other Internet sources. *This demo runs on {DEVICE}*.
For more information, visit the [model repository](https://huggingface.co/CBSMasterThesis).
## Configuration
""".strip()
PROMPT_BOX_INSTRUCTION = "Enter your Instructions here..."
PROMPT_BOX_INPUT = "Enter your Input here..."
EXAMPLES = [
"Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte. ### Instruksjon: Hvordan kan jeg redusere churn og forbedre kundeoppbevaring for mitt B2B-prosjektstyringsverktøy? ### Respons",
'Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte. ### Instruksjon: Generer en kursbeskrivelse for et maskinlæringsfag ### Respons:',
'Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte. ### Instruksjon: Regn ut arealet av en firkant med lengde 10m. Skriv ut et flyttall. ### Respons:',
"Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte. ### Instruksjon: Generer en juridisk sjekkliste for å starte en restaurant i Norge. ### Respons:",
"Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte. ### Instruksjon: generere en liste med spørsmål for å stille brukere som vil være en del av brukervennlighetstestingsprosessen for oppgavebehandlingsappen ### Respons:",
"Nedenfor er en instruksjon som beskriver en oppgave, sammen med et input som gir ytterligere kontekst. Skriv et svar som fullfører forespørselen på riktig måte. ### Instruksjon: Oppsummer informasjonen i denne tabellen ### Input: Post | 2022 | 2021 | 2020\n---------------------\nSum driftsinntekter | 4.294.804 | 4.298.560 | 4.834.075\nÅrets resultat | 53.926 | 2.893 | 173.758\nEgenkapital i alt | 1.613.065 | 1.593.949 | 1.591.056\nSum eiendeler | 3.987.275 | 3.986.888 | 4.166.385 ### Respons:"
]
def style():
st.markdown("""
<link href="https://fonts.googleapis.com/css2?family=Roboto:wght@300&display=swap%22%20rel=%22stylesheet%22" rel="stylesheet">
<style>
.ltr,
textarea {
font-family: Roboto !important;
text-align: left;
direction: ltr !important;
}
.ltr-box {
border-bottom: 1px solid #ddd;
padding-bottom: 20px;
}
.rtl {
text-align: left;
direction: ltr !important;
}
span.result-text {
padding: 3px 3px;
line-height: 32px;
}
span.generated-text {
background-color: rgb(118 200 147 / 13%);
}
</style>""", unsafe_allow_html=True)
class Normalizer:
def remove_repetitions(self, text):
"""Remove repetitions"""
first_ocurrences = []
for sentence in text.split("."):
if sentence not in first_ocurrences:
first_ocurrences.append(sentence)
return '.'.join(first_ocurrences)
def trim_last_sentence(self, text):
"""Trim last sentence if incomplete"""
return text[:text.rfind(".") + 1]
def clean_txt(self, text):
return self.trim_last_sentence(self.remove_repetitions(text))
class TextGeneration:
def __init__(self):
self.tokenizer = None
self.generator = None
self.task = "text-generation"
self.model_name_or_path = MODEL_NAME
set_seed(42)
# @st.cache_resource
def load(self):
print("Loading model... ", end="")
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name_or_path, use_auth_token=HF_AUTH_TOKEN if HF_AUTH_TOKEN else None,
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name_or_path, use_auth_token=HF_AUTH_TOKEN if HF_AUTH_TOKEN else None,
pad_token_id=self.tokenizer.eos_token_id, eos_token_id=self.tokenizer.eos_token_id,
torch_dtype=DTYPE, low_cpu_mem_usage=False if DEVICE == "cpu" else True
).to(device=DEVICE, non_blocking=True)
_ = self.model.eval()
# -1 if DEVICE == "cpu" else int(DEVICE.split(":")[-1])
device_number = torch.cuda.current_device()
self.generator = pipeline(
self.task, model=self.model, tokenizer=self.tokenizer, device=device_number)
print("Done")
# with torch.no_grad():
# tokens = tokenizer.encode(prompt, return_tensors='pt').to(device=device, non_blocking=True)
# gen_tokens = self.model.generate(tokens, do_sample=True, temperature=0.8, max_length=128)
# generated = tokenizer.batch_decode(gen_tokens)[0]
# return generated
def generate(self, prompt, generation_kwargs):
max_length = len(self.tokenizer(prompt)[
"input_ids"]) + generation_kwargs["max_length"]
generation_kwargs["max_length"] = min(
max_length, self.model.config.n_positions)
# generation_kwargs["num_return_sequences"] = 1
# generation_kwargs["return_full_text"] = False
return self.generator(
prompt,
**generation_kwargs,
)[0]["generated_text"]
# Generate responses
def generate_prompt(instruction, input=None):
if input:
prompt = f"""Nedenfor er en instruksjon som beskriver en oppgave, sammen med et input som gir ytterligere kontekst. Skriv et svar som fullfører forespørselen på riktig måte.
### Instruksjon:
{instruction}
### Input:
{input}
### Respons:"""
else:
prompt = f""""Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte.
### Instruksjon:
{instruction}
### Respons:"""
return prompt
# @st.cache(allow_output_mutation=True, hash_funcs={AutoModelForCausalLM: lambda _: None})
# @st.cache(allow_output_mutation=True, hash_funcs={TextGeneration: lambda _: None})
@st.cache_resource
def load_text_generator():
generator = TextGeneration()
generator.load()
return generator
def main():
st.set_page_config(
page_title="NB-GPT-J-6B-NorPaca",
page_icon="🇳🇴",
layout="wide",
initial_sidebar_state="expanded"
)
style()
with st.spinner('Loading the model. Please, wait...'):
generator = load_text_generator()
st.sidebar.markdown(SIDEBAR_INFO, unsafe_allow_html=True)
query_params = st.experimental_get_query_params()
if query_params:
st.experimental_set_query_params(**dict())
max_length = st.sidebar.slider(
label='Max words to generate',
help="The maximum length of the sequence to be generated.",
min_value=1,
max_value=MAX_LENGTH,
value=int(query_params.get("max_length", [256])[0]),
step=1
)
top_p = st.sidebar.slider(
label='Top-p',
help="Only the most probable tokens with probabilities that add up to `top_p` or higher are kept for "
"generation.",
min_value=0.0,
max_value=1.0,
value=float(query_params.get("top_p", [0.75])[0]),
step=0.01
)
temperature = st.sidebar.slider(
label='Temperature',
help="The value used to module the next token probabilities",
min_value=0.1,
max_value=10.0,
value=float(query_params.get("temperature", [0.2])[0]),
step=0.05
)
do_sample = st.sidebar.selectbox(
label='Sampling?',
options=(False, True),
help="Whether or not to use sampling; use greedy decoding otherwise.",
index=int(query_params.get("do_sample", ["true"])[
0].lower()[0] in ("t", "y", "1")),
)
top_k = st.sidebar.slider(
label='Top-k',
help="The number of highest probability vocabulary tokens to keep for top-k-filtering",
min_value=40,
max_value=80,
value=int(query_params.get("top_k", [50])[0]),
step=1
)
generation_kwargs = {
"max_length": max_length,
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
"do_sample": do_sample,
# "do_clean": do_clean,
}
st.markdown(HEADER_INFO)
prompts = EXAMPLES + ["Custom"]
prompt = st.selectbox('Examples', prompts, index=len(prompts) - 1)
if prompt == "Custom":
prompt_box_instruction = query_params.get(
"text1", [PROMPT_BOX_INSTRUCTION])[0].strip()
prompt_box_input = query_params.get(
"text2", [PROMPT_BOX_INPUT])[0].strip()
prompt_box = f"{prompt_box_instruction} {prompt_box_input}"
else:
if "### Input:" in prompt:
prompt_box_instruction = prompt.split("### Instruksjon:")[
1].split("### Input:")[0].strip()
prompt_box_input = prompt.split(
"### Input:")[1].split("### Respons:")[0].strip()
else:
prompt_box_instruction = prompt.split(
"### Instruksjon:")[1].split("### Respons:")[0].strip()
prompt_box_input = None
prompt_box = prompt
if prompt == "Custom":
text_instruction = st.text_area(
"Enter Instruction", PROMPT_BOX_INSTRUCTION)
text_input = st.text_area("Enter Input", PROMPT_BOX_INPUT)
else:
text_instruction = st.text_area(
"Enter Instruction", prompt_box_instruction)
text_input = st.text_area("Enter Input", prompt_box_input) if "### Input:" in prompt else st.text_area(
"Enter Input", PROMPT_BOX_INPUT)
generation_kwargs_ph = st.empty()
cleaner = Normalizer()
if st.button("Generate!"):
output = st.empty()
with st.spinner(text="Generating..."):
generation_kwargs_ph.markdown(
", ".join([f"`{k}`: {v}" for k, v in generation_kwargs.items()]))
if text_instruction:
text = generate_prompt(text_instruction, text_input) if text_input != "Enter your Input here..." else generate_prompt(
text_instruction)
#print("TEXT OUT", text)
share_args = {"text": text, **generation_kwargs}
st.experimental_set_query_params(**share_args)
for _ in range(5):
generated_text = generator.generate(
text, generation_kwargs)
# if do_clean:
# generated_text = cleaner.clean_txt(generated_text)
if generated_text.strip().startswith(text):
generated_text = generated_text.replace(
text, "", 1).strip()
output.markdown(
f'<p class="ltr ltr-box">'
f'<span class="result-text">{text} <span>'
f'<span class="result-text generated-text">{generated_text}</span>'
f'</p>',
unsafe_allow_html=True
)
if generated_text.strip():
components.html(
f"""
<a class="twitter-share-button"
data-text="Check my prompt using NB-GPT-J-6B-NorPaca!🇳🇴 https://huggingface.co/spaces/MasterThesisCBS/NorPaca_GPT?{urlencode(share_args)}"
data-show-count="false">
data-size="Small"
data-hashtags="nb,gpt-j"
Tweet
</a>
<script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>
"""
)
break
if not generated_text.strip():
st.markdown(
"*Tried 5 times but did not produce any result. Try again!*")
if __name__ == '__main__':
main()
|