Spaces:
Sleeping
Sleeping
File size: 3,264 Bytes
841d7fc c3d240e 907cc73 c3d240e 841d7fc c3d240e 841d7fc 295c6bd 5eeffc0 295c6bd 8ff33c6 841d7fc 5eeffc0 295c6bd d3b42d5 295c6bd 841d7fc 8ff33c6 a369299 8ff33c6 5eeffc0 8ff33c6 5eeffc0 8ff33c6 5eeffc0 8ff33c6 5eeffc0 8ff33c6 5eeffc0 e2fe9b0 8ff33c6 e2fe9b0 8ff33c6 382662a 37f71ff f570496 eac89da 37f71ff ec48038 37f71ff f570496 37f71ff f570496 d3ad40f f570496 ec48038 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
# Running:
You can run the performance benchmark with `./benchmark.sh`.
Modify the search code in `paralleleureqa.jl` and `eureqa.jl` to your liking
(see below for options). Then, in a new Julia file called
`myfile.jl`, you can write:
```julia
include("paralleleureqa.jl")
fullRun(10,
npop=100,
annealing=true,
ncyclesperiteration=1000,
fractionReplaced=0.1f0,
verbosity=100)
```
The first arg is the number of migration periods to run,
with `ncyclesperiteration` determining how many generations
per migration period. `npop` is the number of population members.
`annealing` determines whether to stay in exploration mode,
or tune it down with each cycle. `fractionReplaced` is
how much of the population is replaced by migrated equations each
step.
Run it with threading turned on using:
`julia --threads auto -O3 myfile.jl`
## Modification
You can change the binary and unary operators in `eureqa.jl` here:
```julia
const binops = [plus, mult]
const unaops = [sin, cos, exp];
```
E.g., you can add the function for powers with:
```julia
pow(x::Float32, y::Float32)::Float32 = sign(x)*abs(x)^y
const binops = [plus, mult, pow]
```
You can change the dataset here:
```julia
const X = convert(Array{Float32, 2}, randn(100, 5)*2)
# Here is the function we want to learn (x2^2 + cos(x3))
const y = convert(Array{Float32, 1}, ((cx,)->cx^2).(X[:, 2]) + cos.(X[:, 3]))
```
by either loading in a dataset, or modifying the definition of `y`.
### Hyperparameters
Annealing allows each evolutionary cycle to turn down the exploration
rate over time: at the end (temperature 0), it will only select solutions
better than existing solutions.
The following parameter, parsimony, is how much to punish complex solutions:
```julia
const parsimony = 0.01
```
Finally, the following
determins how much to scale temperature by (T between 0 and 1).
```julia
const alpha = 10.0
```
Larger alpha means more exploration.
One can also adjust the relative probabilities of each mutation here:
```julia
weights = [8, 1, 1, 1, 2]
```
(for: 1. perturb constant, 2. mutate operator,
3. append a node, 4. delete a subtree, 5. do nothing).
# TODO
- [ ] Create a Python interface
- [x] Create a benchmark for speed
- [ ] Create a benchmark for accuracy
- [x] Record hall of fame
- [x] Optionally (with hyperparameter) migrate the hall of fame, rather than current bests
- [x] Test performance of reduced precision integers
- No effect
- [ ] Create struct to pass through all hyperparameters, instead of treating as constants
- Make sure doesn't affect performance
- [ ] Hyperparameter tune
- [ ] Simplify subtrees with only constants beneath them. Or should I? Maybe randomly simplify sometimes?
- [ ] Use NN to generate weights over all probability distribution, and train on some randomly-generated equations
- [ ] Performance:
- [ ] Use an enum for functions instead of storing them?
- Current most expensive operations:
- [x] deepcopy() before the mutate, to see whether to accept or not.
- Seems like its necessary right now. But still by far the slowest option.
- [ ] Calculating the loss function - there is duplicate calculations happening.
- [ ] Declaration of the weights array every iteration
|