File size: 29,196 Bytes
cedbbde
0557713
eefdfef
688106d
5e2a70f
 
688106d
627c408
 
 
2554a3e
c28a133
2554a3e
c28a133
2554a3e
c28a133
627c408
 
 
 
 
 
 
 
2554a3e
 
 
 
 
 
 
c4bc4e3
627c408
688106d
 
 
 
295c6bd
688106d
c3d240e
 
 
 
9fa51a8
 
cedbbde
 
688106d
 
 
6f3a331
 
41cab3e
dd17964
688106d
 
41cab3e
dd17964
 
 
 
 
41cab3e
688106d
dd17964
 
 
688106d
 
327e651
 
 
 
 
 
3a578d2
c9cb1b6
327e651
 
 
688106d
6f3a331
688106d
 
 
 
 
c9cb1b6
688106d
 
 
319103f
 
 
 
 
 
 
 
 
 
 
688106d
 
 
 
 
 
7f5b38a
 
 
 
 
688106d
 
dd17964
688106d
c9cb1b6
688106d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41cab3e
688106d
 
 
 
 
 
41cab3e
 
688106d
 
 
6f3a331
688106d
 
 
 
 
c9cb1b6
688106d
 
 
 
6f3a331
688106d
 
 
 
 
c9cb1b6
688106d
 
 
 
6f3a331
688106d
 
 
 
 
 
 
 
 
 
 
 
 
 
dd17964
688106d
dd17964
688106d
 
 
 
 
6f3a331
688106d
6f3a331
688106d
 
 
c9cb1b6
688106d
 
 
 
 
6f3a331
 
688106d
41cab3e
688106d
 
 
 
 
 
 
41cab3e
6f3a331
35b5720
6f3a331
688106d
41cab3e
 
688106d
 
 
 
41cab3e
688106d
 
 
41cab3e
688106d
 
 
 
cf95c4d
41cab3e
 
ec58b6d
41cab3e
ec58b6d
41cab3e
 
40270bf
 
 
 
 
 
41cab3e
40270bf
 
 
 
 
 
 
41cab3e
688106d
 
 
cedbbde
6f3a331
c4bc4e3
6f3a331
ef3bdd3
b13cd33
 
 
 
6f3a331
688106d
 
 
 
 
 
 
 
41cab3e
688106d
 
 
6f3a331
688106d
 
 
 
6f3a331
688106d
 
 
41cab3e
688106d
 
dd17964
688106d
 
 
 
 
dd17964
688106d
 
 
 
 
 
 
 
 
 
 
 
b408888
 
688106d
b408888
 
 
 
 
 
 
dd17964
b408888
 
 
 
 
dd17964
b408888
 
 
 
 
 
 
 
 
 
 
 
 
688106d
6f3a331
688106d
 
 
 
b408888
 
 
08a98f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b408888
 
 
d1327f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
688106d
 
 
cb0e2e9
47712b5
 
 
 
 
dd17964
47712b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd17964
47712b5
 
dd17964
47712b5
 
 
 
 
 
f972a12
cb0e2e9
f972a12
 
 
 
dd17964
f972a12
 
 
c9cb1b6
f972a12
 
 
 
 
dd17964
f972a12
 
 
 
 
cb0e2e9
 
 
 
9fa51a8
cb0e2e9
 
 
 
 
 
688106d
 
cb0e2e9
 
 
 
41cab3e
688106d
a1e142a
327e651
a1e142a
 
 
b364345
319103f
41cab3e
688106d
 
 
 
319103f
2e104cc
319103f
2e104cc
f972a12
2e104cc
 
f972a12
47712b5
cb0e2e9
2e104cc
319103f
d3b42d5
cb0e2e9
688106d
41cab3e
cb0e2e9
 
d3ad40f
688106d
 
 
cb0e2e9
 
 
688106d
 
cb0e2e9
688106d
 
 
6f3a331
 
688106d
 
 
 
 
 
 
 
 
 
 
6f3a331
41cab3e
688106d
6f3a331
 
41cab3e
688106d
 
 
 
d3b42d5
941b663
688106d
 
 
 
 
 
 
 
 
a369299
311797d
a369299
cedbbde
a369299
 
688106d
 
35b5720
eefdfef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
688106d
eefdfef
688106d
 
 
 
 
6e5f7ce
 
35b5720
c3d240e
6e5f7ce
688106d
6f3a331
6e5f7ce
688106d
35b5720
688106d
35b5720
688106d
6518f83
c3d240e
c3d54db
 
 
c3d240e
c3d54db
688106d
6518f83
688106d
 
b18ab5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cedbbde
 
 
 
 
 
 
 
b18ab5a
cedbbde
 
 
 
b18ab5a
cedbbde
 
78cf882
cedbbde
78cf882
 
e0d94cd
ea010a7
 
 
 
 
 
 
 
e0d94cd
78cf882
ea010a7
 
 
 
 
 
 
 
 
 
 
 
 
 
cedbbde
b18ab5a
 
 
 
5e2a70f
 
 
b18ab5a
5e2a70f
 
cedbbde
5e2a70f
 
a369299
de38458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3662fae
de38458
 
 
 
 
 
ecc6ae8
 
 
 
 
 
 
de38458
 
 
ecc6ae8
 
7b70a53
 
121e6ac
ecc6ae8
 
121e6ac
eefdfef
ecc6ae8
 
 
 
121e6ac
eefdfef
ecc6ae8
 
121e6ac
92088a8
 
 
7b70a53
2f6f790
7b70a53
 
 
 
 
92088a8
ecc6ae8
4df12c1
7b70a53
 
 
 
ecc6ae8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22540af
 
 
 
 
 
ecc6ae8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02e2655
eefdfef
02e2655
 
 
 
 
 
 
 
ecc6ae8
 
02e2655
ecc6ae8
02e2655
ecc6ae8
 
 
92088a8
ecc6ae8
 
 
92088a8
2f6f790
 
92088a8
2f6f790
 
 
 
 
 
 
2b01937
2f6f790
2b01937
 
22540af
87afd92
13409d1
2b01937
db9be07
2b01937
92088a8
 
 
 
22540af
 
 
 
 
 
92088a8
 
2b01937
87afd92
 
22540af
2b01937
 
92088a8
 
 
 
 
 
 
ecc6ae8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
import Optim
import Printf: @printf
import Random: shuffle!

const maxdegree = 2
const actualMaxsize = maxsize + maxdegree


# Sum of square error between two arrays
function SSE(x::Array{Float32}, y::Array{Float32})::Float32
    diff = (x - y)
    if weighted
        return sum(diff .* diff .* weights)
    else
        return sum(diff .* diff)
    end
end

# Mean of square error between two arrays
function MSE(x::Array{Float32}, y::Array{Float32})::Float32
    return SSE(x, y)/size(x)[1]
end

const len = size(X)[1]

if weighted
    const avgy = sum(y .* weights)/len/sum(weights)
else
    const avgy = sum(y)/len
end

const baselineSSE = SSE(y, convert(Array{Float32, 1}, ones(len) .* avgy))

id = (x,) -> x
const nuna = size(unaops)[1]
const nbin = size(binops)[1]
const nops = nuna + nbin
const nvar = size(X)[2];

function debug(verbosity, string...)
    verbosity > 0 ? println(string...) : nothing
end

function getTime()::Integer
    return round(Integer, 1e3*(time()-1.6e9))
end

# Define a serialization format for the symbolic equations:
mutable struct Node
    #Holds operators, variables, constants in a tree
    degree::Integer #0 for constant/variable, 1 for cos/sin, 2 for +/* etc.
    val::Union{Float32, Integer} #Either const value, or enumerates variable
    constant::Bool #false if variable
    op::Integer #enumerates operator (separately for degree=1,2)
    l::Union{Node, Nothing}
    r::Union{Node, Nothing}

    Node(val::Float32) = new(0, val, true, 1, nothing, nothing)
    Node(val::Integer) = new(0, val, false, 1, nothing, nothing)
    Node(op::Integer, l::Node) = new(1, 0.0f0, false, op, l, nothing)
    Node(op::Integer, l::Union{Float32, Integer}) = new(1, 0.0f0, false, op, Node(l), nothing)
    Node(op::Integer, l::Node, r::Node) = new(2, 0.0f0, false, op, l, r)

    #Allow to pass the leaf value without additional node call:
    Node(op::Integer, l::Union{Float32, Integer}, r::Node) = new(2, 0.0f0, false, op, Node(l), r)
    Node(op::Integer, l::Node, r::Union{Float32, Integer}) = new(2, 0.0f0, false, op, l, Node(r))
    Node(op::Integer, l::Union{Float32, Integer}, r::Union{Float32, Integer}) = new(2, 0.0f0, false, op, Node(l), Node(r))
end

# Copy an equation (faster than deepcopy)
function copyNode(tree::Node)::Node
   if tree.degree == 0
       return Node(tree.val)
   elseif tree.degree == 1
       return Node(tree.op, copyNode(tree.l))
    else
        return Node(tree.op, copyNode(tree.l), copyNode(tree.r))
   end
end

# Count the operators, constants, variables in an equation
function countNodes(tree::Node)::Integer
    if tree.degree == 0
        return 1
    elseif tree.degree == 1
        return 1 + countNodes(tree.l)
    else
        return 1 + countNodes(tree.l) + countNodes(tree.r)
    end
end

# Count the max depth of a tree
function countDepth(tree::Node)::Integer
    if tree.degree == 0
        return 1
    elseif tree.degree == 1
        return 1 + countDepth(tree.l)
    else
        return 1 + max(countDepth(tree.l), countDepth(tree.r))
    end
end

# Convert an equation to a string
function stringTree(tree::Node)::String
    if tree.degree == 0
        if tree.constant
            return string(tree.val)
        else
            if useVarMap
                return varMap[tree.val]
            else
                return "x$(tree.val - 1)"
            end
        end
    elseif tree.degree == 1
        return "$(unaops[tree.op])($(stringTree(tree.l)))"
    else
        return "$(binops[tree.op])($(stringTree(tree.l)), $(stringTree(tree.r)))"
    end
end

# Print an equation
function printTree(tree::Node)
    println(stringTree(tree))
end

# Return a random node from the tree
function randomNode(tree::Node)::Node
    if tree.degree == 0
        return tree
    end
    a = countNodes(tree)
    b = 0
    c = 0
    if tree.degree >= 1
        b = countNodes(tree.l)
    end
    if tree.degree == 2
        c = countNodes(tree.r)
    end

    i = rand(1:1+b+c)
    if i <= b
        return randomNode(tree.l)
    elseif i == b + 1
        return tree
    end

    return randomNode(tree.r)
end

# Count the number of unary operators in the equation
function countUnaryOperators(tree::Node)::Integer
    if tree.degree == 0
        return 0
    elseif tree.degree == 1
        return 1 + countUnaryOperators(tree.l)
    else
        return 0 + countUnaryOperators(tree.l) + countUnaryOperators(tree.r)
    end
end

# Count the number of binary operators in the equation
function countBinaryOperators(tree::Node)::Integer
    if tree.degree == 0
        return 0
    elseif tree.degree == 1
        return 0 + countBinaryOperators(tree.l)
    else
        return 1 + countBinaryOperators(tree.l) + countBinaryOperators(tree.r)
    end
end

# Count the number of operators in the equation
function countOperators(tree::Node)::Integer
    return countUnaryOperators(tree) + countBinaryOperators(tree)
end

# Randomly convert an operator into another one (binary->binary;
# unary->unary)
function mutateOperator(tree::Node)::Node
    if countOperators(tree) == 0
        return tree
    end
    node = randomNode(tree)
    while node.degree == 0
        node = randomNode(tree)
    end
    if node.degree == 1
        node.op = rand(1:length(unaops))
    else
        node.op = rand(1:length(binops))
    end
    return tree
end

# Count the number of constants in an equation
function countConstants(tree::Node)::Integer
    if tree.degree == 0
        return convert(Integer, tree.constant)
    elseif tree.degree == 1
        return 0 + countConstants(tree.l)
    else
        return 0 + countConstants(tree.l) + countConstants(tree.r)
    end
end

# Randomly perturb a constant
function mutateConstant(
        tree::Node, T::Float32,
        probNegate::Float32=0.01f0)::Node
    # T is between 0 and 1.

    if countConstants(tree) == 0
        return tree
    end
    node = randomNode(tree)
    while node.degree != 0 || node.constant == false
        node = randomNode(tree)
    end

    bottom = 0.1f0
    maxChange = perturbationFactor * T + 1.0f0 + bottom
    factor = maxChange^Float32(rand())
    makeConstBigger = rand() > 0.5

    if makeConstBigger
        node.val *= factor
    else
        node.val /= factor
    end

    if rand() > probNegate
        node.val *= -1
    end

    return tree
end

# Evaluate an equation over an array of datapoints
function evalTreeArray(tree::Node)::Array{Float32, 1}
    if tree.degree == 0
        if tree.constant
            return fill(tree.val, len)
        else
            return copy(X[:, tree.val])
        end
    elseif tree.degree == 1
        cumulator = evalTreeArray(tree.l)
        op = unaops[tree.op]
        @inbounds for i=1:len
            cumulator[i] = op(cumulator[i])
        end
        return cumulator
    else
        op = binops[tree.op]
        cumulator = evalTreeArray(tree.l)
        array2 = evalTreeArray(tree.r)
        @inbounds for i=1:len
            cumulator[i] = op(cumulator[i], array2[i])
        end
        return cumulator
    end
end

# Score an equation
function scoreFunc(tree::Node)::Float32
    try
        return SSE(evalTreeArray(tree), y)/baselineSSE + countNodes(tree)*parsimony
    catch error
        if isa(error, DomainError) || isa(error, LoadError) || isa(error, TaskFailedException)
            return 1f9
        else
            throw(error)
        end
    end
end

# Add a random unary/binary operation to the end of a tree
function appendRandomOp(tree::Node)::Node
    node = randomNode(tree)
    while node.degree != 0
        node = randomNode(tree)
    end

    choice = rand()
    makeNewBinOp = choice < nbin/nops
    if rand() > 0.5
        left = Float32(randn())
    else
        left = rand(1:nvar)
    end
    if rand() > 0.5
        right = Float32(randn())
    else
        right = rand(1:nvar)
    end

    if makeNewBinOp
        newnode = Node(
            rand(1:length(binops)),
            left,
            right
        )
    else
        newnode = Node(
            rand(1:length(unaops)),
            left
        )
    end
    node.l = newnode.l
    node.r = newnode.r
    node.op = newnode.op
    node.degree = newnode.degree
    node.val = newnode.val
    node.constant = newnode.constant
    return tree
end

# Insert random node
function insertRandomOp(tree::Node)::Node
    node = randomNode(tree)
    choice = rand()
    makeNewBinOp = choice < nbin/nops
    left = copyNode(node)

    if makeNewBinOp
        right = randomConstantNode()
        newnode = Node(
            rand(1:length(binops)),
            left,
            right
        )
    else
        newnode = Node(
            rand(1:length(unaops)),
            left
        )
    end
    node.l = newnode.l
    node.r = newnode.r
    node.op = newnode.op
    node.degree = newnode.degree
    node.val = newnode.val
    node.constant = newnode.constant
    return tree
end

function randomConstantNode()::Node
    if rand() > 0.5
        val = Float32(randn())
    else
        val = rand(1:nvar)
    end
    newnode = Node(val)
    return newnode
end

# Return a random node from the tree with parent
function randomNodeAndParent(tree::Node, parent::Union{Node, Nothing})::Tuple{Node, Union{Node, Nothing}}
    if tree.degree == 0
        return tree, parent
    end
    a = countNodes(tree)
    b = 0
    c = 0
    if tree.degree >= 1
        b = countNodes(tree.l)
    end
    if tree.degree == 2
        c = countNodes(tree.r)
    end

    i = rand(1:1+b+c)
    if i <= b
        return randomNodeAndParent(tree.l, tree)
    elseif i == b + 1
        return tree, parent
    end

    return randomNodeAndParent(tree.r, tree)
end

# Select a random node, and replace it an the subtree
# with a variable or constant
function deleteRandomOp(tree::Node)::Node
    node, parent = randomNodeAndParent(tree, nothing)
    isroot = (parent == nothing)

    if node.degree == 0
        # Replace with new constant
        newnode = randomConstantNode()
        node.l = newnode.l
        node.r = newnode.r
        node.op = newnode.op
        node.degree = newnode.degree
        node.val = newnode.val
        node.constant = newnode.constant
    elseif node.degree == 1
        # Join one of the children with the parent
        if isroot
            return node.l
        elseif parent.l == node
            parent.l = node.l
        else
            parent.r = node.l
        end
    else
        # Join one of the children with the parent
        if rand() < 0.5
            if isroot
                return node.l
            elseif parent.l == node
                parent.l = node.l
            else
                parent.r = node.l
            end
        else
            if isroot
                return node.r
            elseif parent.l == node
                parent.l = node.r
            else
                parent.r = node.r
            end
        end
    end
    return tree
end

# Simplify tree
function combineOperators(tree::Node)::Node
    # (const (+*) const) already accounted for
    # ((const + var) + const) => (const + var)
    # ((const * var) * const) => (const * var)
    # (anything commutative!)
    if tree.degree == 2 && (binops[tree.op] == plus || binops[tree.op] == mult)
        op = tree.op
        if tree.l.constant || tree.r.constant
            # Put the constant in r
            if tree.l.constant
                tmp = tree.r
                tree.r = tree.l
                tree.l = tmp
            end
            topconstant = tree.r.val
            # Simplify down first
            tree.l = combineOperators(tree.l)
            below = tree.l
            if below.degree == 2 && below.op == op
                if below.l.constant
                    tree = below
                    tree.l.val = binops[op](tree.l.val, topconstant)
                elseif below.r.constant
                    tree = below
                    tree.r.val = binops[op](tree.r.val, topconstant)
                end
            end
        end
    end
    return tree
end

# Simplify tree
function simplifyTree(tree::Node)::Node
    if tree.degree == 1
        tree.l = simplifyTree(tree.l)
        if tree.l.degree == 0 && tree.l.constant
            return Node(unaops[tree.op](tree.l.val))
        end
    elseif tree.degree == 2
        tree.l = simplifyTree(tree.l)
        tree.r = simplifyTree(tree.r)
        constantsBelow = (
             tree.l.degree == 0 && tree.l.constant &&
             tree.r.degree == 0 && tree.r.constant
        )
        if constantsBelow
            return Node(binops[tree.op](tree.l.val, tree.r.val))
        end
    end
    return tree
end

# Define a member of population by equation, score, and age
mutable struct PopMember
    tree::Node
    score::Float32
    birth::Integer

    PopMember(t::Node) = new(t, scoreFunc(t), getTime())
    PopMember(t::Node, score::Float32) = new(t, score, getTime())

end

# Go through one simulated annealing mutation cycle
#  exp(-delta/T) defines probability of accepting a change
function iterate(member::PopMember, T::Float32)::PopMember
    prev = member.tree
    tree = copyNode(prev)
    beforeLoss = member.score

    mutationChoice = rand()
    weightAdjustmentMutateConstant = min(8, countConstants(tree))/8.0
    cur_weights = copy(mutationWeights) .* 1.0
    cur_weights[1] *= weightAdjustmentMutateConstant
    cur_weights /= sum(cur_weights)
    cweights = cumsum(cur_weights)
    n = countNodes(tree)
    depth = countDepth(tree)

    if mutationChoice < cweights[1]
        tree = mutateConstant(tree, T)
    elseif mutationChoice < cweights[2]
        tree = mutateOperator(tree)
    elseif mutationChoice < cweights[3] && n < maxsize && depth < maxdepth
        tree = appendRandomOp(tree)
    elseif mutationChoice < cweights[4] && n < maxsize && depth < maxdepth
        tree = insertRandomOp(tree)
    elseif mutationChoice < cweights[5]
        tree = deleteRandomOp(tree)
    elseif mutationChoice < cweights[6]
        tree = simplifyTree(tree) # Sometimes we simplify tree
        tree = combineOperators(tree) # See if repeated constants at outer levels
        return PopMember(tree, beforeLoss)
    elseif mutationChoice < cweights[7]
        tree = genRandomTree(5) # Sometimes we generate a new tree completely tree
    else
        return PopMember(tree, beforeLoss)
    end

    afterLoss = scoreFunc(tree)

    if annealing
        delta = afterLoss - beforeLoss
        probChange = exp(-delta/(T*alpha))

        return_unaltered = (isnan(afterLoss) || probChange < rand())
        if return_unaltered
            return PopMember(copyNode(prev), beforeLoss)
        end
    end
    return PopMember(tree, afterLoss)
end

# Create a random equation by appending random operators
function genRandomTree(length::Integer)::Node
    tree = Node(1.0f0)
    for i=1:length
        tree = appendRandomOp(tree)
    end
    return tree
end


# A list of members of the population, with easy constructors,
#  which allow for random generation of new populations
mutable struct Population
    members::Array{PopMember, 1}
    n::Integer

    Population(pop::Array{PopMember, 1}) = new(pop, size(pop)[1])
    Population(npop::Integer) = new([PopMember(genRandomTree(3)) for i=1:npop], npop)
    Population(npop::Integer, nlength::Integer) = new([PopMember(genRandomTree(nlength)) for i=1:npop], npop)

end

# Sample 10 random members of the population, and make a new one
function samplePop(pop::Population)::Population
    idx = rand(1:pop.n, ns)
    return Population(pop.members[idx])
end

# Sample the population, and get the best member from that sample
function bestOfSample(pop::Population)::PopMember
    sample = samplePop(pop)
    best_idx = argmin([sample.members[member].score for member=1:sample.n])
    return sample.members[best_idx]
end

# Return best 10 examples
function bestSubPop(pop::Population; topn::Integer=10)::Population
    best_idx = sortperm([pop.members[member].score for member=1:pop.n])
    return Population(pop.members[best_idx[1:topn]])
end

# Pass through the population several times, replacing the oldest
# with the fittest of a small subsample
function regEvolCycle(pop::Population, T::Float32)::Population
    # Batch over each subsample. Can give 15% improvement in speed; probably moreso for large pops.
    # but is ultimately a different algorithm than regularized evolution, and might not be
    # as good.
    if fast_cycle
        shuffle!(pop.members)
        n_evol_cycles = round(Integer, pop.n/ns)
        babies = Array{PopMember}(undef, n_evol_cycles)

        # Iterate each ns-member sub-sample
        @inbounds Threads.@threads for i=1:n_evol_cycles
            best_score = Inf32
            best_idx = 1+(i-1)*ns
            # Calculate best member of the subsample:
            for sub_i=1+(i-1)*ns:i*ns
                if pop.members[sub_i].score < best_score
                    best_score = pop.members[sub_i].score
                    best_idx = sub_i
                end
            end
            allstar = pop.members[best_idx]
            babies[i] = iterate(allstar, T)
        end

        # Replace the n_evol_cycles-oldest members of each population
        @inbounds for i=1:n_evol_cycles
            oldest = argmin([pop.members[member].birth for member=1:pop.n])
            pop.members[oldest] = babies[i]
        end
    else
        for i=1:round(Integer, pop.n/ns)
            allstar = bestOfSample(pop)
            baby = iterate(allstar, T)
            #printTree(baby.tree)
            oldest = argmin([pop.members[member].birth for member=1:pop.n])
            pop.members[oldest] = baby
        end
    end

    return pop
end

# Cycle through regularized evolution many times,
# printing the fittest equation every 10% through
function run(
        pop::Population,
        ncycles::Integer;
        verbosity::Integer=0
        )::Population

    allT = LinRange(1.0f0, 0.0f0, ncycles)
    for iT in 1:size(allT)[1]
        if annealing
            pop = regEvolCycle(pop, allT[iT])
        else
            pop = regEvolCycle(pop, 1.0f0)
        end

        if verbosity > 0 && (iT % verbosity == 0)
            bestPops = bestSubPop(pop)
            bestCurScoreIdx = argmin([bestPops.members[member].score for member=1:bestPops.n])
            bestCurScore = bestPops.members[bestCurScoreIdx].score
            debug(verbosity, bestCurScore, " is the score for ", stringTree(bestPops.members[bestCurScoreIdx].tree))
        end
    end

    return pop
end

# Get all the constants from a tree
function getConstants(tree::Node)::Array{Float32, 1}
    if tree.degree == 0
        if tree.constant
            return [tree.val]
        else
            return Float32[]
        end
    elseif tree.degree == 1
        return getConstants(tree.l)
    else
        both = [getConstants(tree.l), getConstants(tree.r)]
        return [constant for subtree in both for constant in subtree]
    end
end

# Set all the constants inside a tree
function setConstants(tree::Node, constants::Array{Float32, 1})
    if tree.degree == 0
        if tree.constant
            tree.val = constants[1]
        end
    elseif tree.degree == 1
        setConstants(tree.l, constants)
    else
        numberLeft = countConstants(tree.l)
        setConstants(tree.l, constants)
        setConstants(tree.r, constants[numberLeft+1:end])
    end
end


# Proxy function for optimization
function optFunc(x::Array{Float32, 1}, tree::Node)::Float32
    setConstants(tree, x)
    return scoreFunc(tree)
end

# Use Nelder-Mead to optimize the constants in an equation
function optimizeConstants(member::PopMember)::PopMember
    nconst = countConstants(member.tree)
    if nconst == 0
        return member
    end
    x0 = getConstants(member.tree)
    f(x::Array{Float32,1})::Float32 = optFunc(x, member.tree)
    if size(x0)[1] == 1
        algorithm = Optim.Newton
    else
        algorithm = Optim.NelderMead
    end

    try
        result = Optim.optimize(f, x0, algorithm(), Optim.Options(iterations=100))
        # Try other initial conditions:
        for i=1:nrestarts
            tmpresult = Optim.optimize(f, x0 .* (1f0 .+ 5f-1*randn(Float32, size(x0)[1])), algorithm(), Optim.Options(iterations=100))
            if tmpresult.minimum < result.minimum
                result = tmpresult
            end
        end

        if Optim.converged(result)
            setConstants(member.tree, result.minimizer)
            member.score = convert(Float32, result.minimum)
            member.birth = getTime()
        else
            setConstants(member.tree, x0)
        end
    catch error
        # Fine if optimization encountered domain error, just return x0
        if isa(error, AssertionError)
            setConstants(member.tree, x0)
        else
            throw(error)
        end
    end
    return member
end


# List of the best members seen all time
mutable struct HallOfFame
    members::Array{PopMember, 1}
    exists::Array{Bool, 1} #Whether it has been set

    # Arranged by complexity - store one at each.
    HallOfFame() = new([PopMember(Node(1f0), 1f9) for i=1:actualMaxsize], [false for i=1:actualMaxsize])
end


# Check for errors before they happen
function testConfiguration()
    test_input = LinRange(-100f0, 100f0, 99)

    try
        for left in test_input
            for right in test_input
                for binop in binops
                    test_output = binop.(left, right)
                end
            end
            for unaop in unaops
                test_output = unaop.(left)
            end
        end
    catch error
        @printf("\n\nYour configuration is invalid - one of your operators is not well-defined over the real line.\n\n\n")
        throw(error)
    end
end


function fullRun(niterations::Integer;
                npop::Integer=300,
                ncyclesperiteration::Integer=3000,
                fractionReplaced::Float32=0.1f0,
                verbosity::Integer=0,
                topn::Integer=10
               )

    testConfiguration()

    # 1. Start a population on every process
    allPops = Future[]
    # Set up a channel to send finished populations back to head node
    channels = [RemoteChannel(1) for j=1:npopulations]
    bestSubPops = [Population(1) for j=1:npopulations]
    hallOfFame = HallOfFame()

    for i=1:npopulations
        future = @spawnat :any Population(npop, 3)
        push!(allPops, future)
    end

    # # 2. Start the cycle on every process:
    @sync for i=1:npopulations
        @async allPops[i] = @spawnat :any run(fetch(allPops[i]), ncyclesperiteration, verbosity=verbosity)
    end
    println("Started!")
    cycles_complete = npopulations * niterations

    last_print_time = time()
    num_equations = 0.0
    print_every_n_seconds = 5
    equation_speed = Float32[]

    for i=1:npopulations
        # Start listening for each population to finish:
        @async put!(channels[i], fetch(allPops[i]))
    end

    while cycles_complete > 0
        @inbounds for i=1:npopulations
            # Non-blocking check if a population is ready:
            if isready(channels[i])
                # Take the fetch operation from the channel since its ready
                cur_pop = take!(channels[i])
                bestSubPops[i] = bestSubPop(cur_pop, topn=topn)

                #Try normal copy...
                bestPops = Population([member for pop in bestSubPops for member in pop.members])

                for member in cur_pop.members
                    size = countNodes(member.tree)
                    if member.score < hallOfFame.members[size].score
                        hallOfFame.members[size] = deepcopy(member)
                        hallOfFame.exists[size] = true
                    end
                end

                # Dominating pareto curve - must be better than all simpler equations
                dominating = PopMember[]
                open(hofFile, "w") do io
                    println(io,"Complexity|MSE|Equation")
                    for size=1:actualMaxsize
                        if hallOfFame.exists[size]
                            member = hallOfFame.members[size]
                            curMSE = MSE(evalTreeArray(member.tree), y)
                            numberSmallerAndBetter = 0
                            for i=1:(size-1)
                                if (hallOfFame.exists[size] && curMSE > MSE(evalTreeArray(hallOfFame.members[i].tree), y))
                                    numberSmallerAndBetter += 1
                                end
                            end
                            betterThanAllSmaller = (numberSmallerAndBetter == 0)
                            if betterThanAllSmaller
                                println(io, "$size|$(curMSE)|$(stringTree(member.tree))")
                                push!(dominating, member)
                            end
                        end
                    end
                end

                # Try normal copy otherwise.
                if migration
                    for k in rand(1:npop, round(Integer, npop*fractionReplaced))
                        to_copy = rand(1:size(bestPops.members)[1])
                        cur_pop.members[k] = PopMember(
                            copyNode(bestPops.members[to_copy].tree),
                            bestPops.members[to_copy].score)
                    end
                end

                if hofMigration && size(dominating)[1] > 0
                    for k in rand(1:npop, round(Integer, npop*fractionReplacedHof))
                        # Copy in case one gets used twice
                        to_copy = rand(1:size(dominating)[1])
                        cur_pop.members[k] = PopMember(
                           copyNode(dominating[to_copy].tree)
                        )
                    end
                end

                @async begin
                    allPops[i] = @spawnat :any let
                        tmp_pop = run(cur_pop, ncyclesperiteration, verbosity=verbosity)
                        for j=1:tmp_pop.n
                            if rand() < 0.1
                                tmp_pop.members[j].tree = simplifyTree(tmp_pop.members[j].tree)
                                tmp_pop.members[j].tree = combineOperators(tmp_pop.members[j].tree)
                                if shouldOptimizeConstants
                                    tmp_pop.members[j] = optimizeConstants(tmp_pop.members[j])
                                end
                            end
                        end
                        tmp_pop
                    end
                    put!(channels[i], fetch(allPops[i]))
                end

                cycles_complete -= 1
                num_equations += ncyclesperiteration * npop / 10.0
            end
        end
        sleep(1e-3)
        elapsed = time() - last_print_time
        #Update if time has passed, and some new equations generated.
        if elapsed > print_every_n_seconds && num_equations > 0.0
            # Dominating pareto curve - must be better than all simpler equations
            current_speed = num_equations/elapsed
            average_over_m_measurements = 10 #for print_every...=5, this gives 50 second running average
            push!(equation_speed, current_speed)
            if length(equation_speed) > average_over_m_measurements
                deleteat!(equation_speed, 1)
            end
            average_speed = sum(equation_speed)/length(equation_speed)
            @printf("\n")
            @printf("Cycles per second: %.3e\n", round(average_speed, sigdigits=3))
            @printf("Hall of Fame:\n")
            @printf("-----------------------------------------\n")
            @printf("%-10s  %-8s   %-8s  %-8s\n", "Complexity", "MSE", "Score", "Equation")
            curMSE = baselineSSE / len
            @printf("%-10d  %-8.3e  %-8.3e  %-.f\n", 0, curMSE, 0f0, avgy)
            lastMSE = curMSE
            lastComplexity = 0

            for size=1:actualMaxsize
                if hallOfFame.exists[size]
                    member = hallOfFame.members[size]
                    curMSE = MSE(evalTreeArray(member.tree), y)
                    numberSmallerAndBetter = 0
                    for i=1:(size-1)
                        if (hallOfFame.exists[size] && curMSE > MSE(evalTreeArray(hallOfFame.members[i].tree), y))
                            numberSmallerAndBetter += 1
                        end
                    end
                    betterThanAllSmaller = (numberSmallerAndBetter == 0)
                    if betterThanAllSmaller
                        delta_c = size - lastComplexity
                        delta_l_mse = log(curMSE/lastMSE)
                        score = convert(Float32, -delta_l_mse/delta_c)
                        @printf("%-10d  %-8.3e  %-8.3e  %-s\n" , size, curMSE, score, stringTree(member.tree))
                        lastMSE = curMSE
                        lastComplexity = size
                    end
                end
            end
            debug(verbosity, "")
            last_print_time = time()
            num_equations = 0.0
        end
    end
end