James McCool
Add custom tab styling to improve UI aesthetics and user experience
d1ddee5
import pulp
import numpy as np
import pandas as pd
import streamlit as st
import pymongo
from itertools import combinations
import time
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
nba_db = client["NBA_DFS"]
nfl_db = client["NFL_Database"]
return nba_db, nfl_db
st.set_page_config(layout="wide")
nba_db, nfl_db = init_conn()
wrong_acro = ['WSH', 'AZ']
right_acro = ['WAS', 'ARI']
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
team_roo_format = {'Top Score%': '{:.2%}','0 Runs': '{:.2%}', '1 Run': '{:.2%}', '2 Runs': '{:.2%}', '3 Runs': '{:.2%}', '4 Runs': '{:.2%}',
'5 Runs': '{:.2%}','6 Runs': '{:.2%}', '7 Runs': '{:.2%}', '8 Runs': '{:.2%}', '9 Runs': '{:.2%}', '10 Runs': '{:.2%}'}
nfl_player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
'4x%': '{:.2%}','GPP%': '{:.2%}'}
nba_player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '4x%': '{:.2%}', '5x%': '{:.2%}',
'6x%': '{:.2%}','GPP%': '{:.2%}'}
expose_format = {'Proj Own': '{:.2%}','Exposure': '{:.2%}'}
all_dk_player_projections = st.secrets["NFL_data"]
st.markdown("""
<style>
/* Tab styling */
.stTabs [data-baseweb="tab-list"] {
gap: 8px;
padding: 4px;
}
.stTabs [data-baseweb="tab"] {
height: 50px;
white-space: pre-wrap;
background-color: #FFD700;
color: white;
border-radius: 10px;
gap: 1px;
padding: 10px 20px;
font-weight: bold;
transition: all 0.3s ease;
}
.stTabs [aria-selected="true"] {
background-color: #DAA520;
color: white;
}
.stTabs [data-baseweb="tab"]:hover {
background-color: #DAA520;
cursor: pointer;
}
</style>""", unsafe_allow_html=True)
@st.cache_resource(ttl=60)
def init_baselines():
collection = nba_db["Player_SD_Range_Of_Outcomes"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_id']]
raw_display = raw_display.loc[raw_display['Median'] > 0]
raw_display = raw_display.sort_values(by='Median', ascending=False)
nba_dk_sd_raw = raw_display[raw_display['site'] == 'Draftkings']
nba_fd_sd_raw = raw_display[raw_display['site'] == 'Fanduel']
try:
collection = nfl_db["DK_SD_NFL_ROO"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
raw_display = raw_display.loc[raw_display['Median'] > 0]
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
nfl_dk_sd_raw = raw_display.sort_values(by='Median', ascending=False)
except:
nfl_dk_sd_raw = pd.DataFrame()
try:
collection = nfl_db["FD_SD_NFL_ROO"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
raw_display = raw_display.loc[raw_display['Median'] > 0]
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
nfl_fd_sd_raw = raw_display.sort_values(by='Median', ascending=False)
except:
nfl_fd_sd_raw = pd.DataFrame()
try:
nba_timestamp = nba_dk_sd_raw['timestamp'].values[0]
except:
nba_timestamp = nba_fd_sd_raw['timestamp'].values[0]
try:
try:
nfl_dk_timestamp = nfl_dk_sd_raw['timestamp'].values[0]
except:
nfl_dk_timestamp = nfl_fd_sd_raw['timestamp'].values[0]
except:
try:
nfl_dk_timestamp = time.time()
except:
nfl_dk_timestamp = time.time()
try:
nba_dk_id_dict = dict(zip(nba_dk_sd_raw['Player'], nba_dk_sd_raw['player_id']))
nfl_dk_id_dict = dict(zip(nfl_dk_sd_raw['Player'], nfl_dk_sd_raw['player_id']))
nba_fd_id_dict = dict(zip(nba_fd_sd_raw['Player'], nba_fd_sd_raw['player_id']))
nfl_fd_id_dict = dict(zip(nfl_fd_sd_raw['Player'], nfl_fd_sd_raw['player_id']))
except:
nba_dk_id_dict = dict(zip(nba_dk_sd_raw['Player'], nba_dk_sd_raw['player_id']))
nfl_dk_id_dict = dict()
nba_fd_id_dict = dict(zip(nba_fd_sd_raw['Player'], nba_fd_sd_raw['player_id']))
nfl_fd_id_dict = dict()
return nba_dk_sd_raw, nba_fd_sd_raw, nfl_dk_sd_raw, nfl_fd_sd_raw, nba_timestamp, nfl_dk_timestamp, nba_dk_id_dict, nfl_dk_id_dict, nba_fd_id_dict, nfl_fd_id_dict
nba_dk_sd_raw, nba_fd_sd_raw, nfl_dk_sd_raw, nfl_fd_sd_raw, nba_timestamp, nfl_dk_timestamp, nba_dk_id_dict, nfl_dk_id_dict, nba_fd_id_dict, nfl_fd_id_dict = init_baselines()
@st.cache_data
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
tab1, tab2 = st.tabs(['Range of Outcomes', 'Optimizer'])
with tab1:
with st.expander('Info and Filters'):
if st.button("Load/Reset Data", key='reset2'):
st.cache_data.clear()
nba_dk_sd_raw, nba_fd_sd_raw, nfl_dk_sd_raw, nfl_fd_sd_raw, nba_timestamp, nfl_dk_timestamp, nba_dk_id_dict, nfl_dk_id_dict, nba_fd_id_dict, nfl_fd_id_dict = init_baselines()
info_container = st.container()
with info_container:
st.info("Simple view is better for mobile and shows just the most valuable stats, Advanced view is better for desktop and shows all stats and thresholds")
options_container = st.container()
with options_container:
col1, col2, col3, col4 = st.columns(4)
with col1:
view_var2 = st.radio("View Type", ("Simple", "Advanced"), key='view_var2')
with col2:
sport_var2 = st.radio("Sport", ('NBA', 'NFL'), key='sport_var2')
if sport_var2 == 'NBA':
dk_roo_raw = nba_dk_sd_raw
fd_roo_raw = nba_fd_sd_raw
elif sport_var2 == 'NFL':
dk_roo_raw = nfl_dk_sd_raw
fd_roo_raw = nfl_fd_sd_raw
with col3:
slate_var2 = st.radio("Slate", ('Paydirt (Main)', 'Paydirt (Secondary)', 'Paydirt (Auxiliary)'), key='slate_var2')
with col4:
site_var2 = st.radio("Site", ('Draftkings', 'Fanduel'), key='site_var2')
if site_var2 == 'Draftkings':
if slate_var2 == 'Paydirt (Main)':
raw_baselines = dk_roo_raw
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #1']
elif slate_var2 == 'Paydirt (Secondary)':
raw_baselines = dk_roo_raw
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #2']
elif slate_var2 == 'Paydirt (Auxiliary)':
raw_baselines = dk_roo_raw
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #3']
elif site_var2 == 'Fanduel':
if slate_var2 == 'Paydirt (Main)':
raw_baselines = fd_roo_raw
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #1']
elif slate_var2 == 'Paydirt (Secondary)':
raw_baselines = fd_roo_raw
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #2']
elif slate_var2 == 'Paydirt (Auxiliary)':
raw_baselines = fd_roo_raw
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #3']
hold_container = st.empty()
if sport_var2 == 'NBA':
if view_var2 == 'Simple':
display_Proj = raw_baselines[['Player', 'Position', 'Salary', 'Median', 'GPP%', 'Own']]
display_Proj = display_Proj.drop_duplicates(subset=['Player'])
display_Proj = display_Proj.set_index('Player')
elif view_var2 == 'Advanced':
display_Proj = raw_baselines[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', 'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_id']]
display_Proj = display_Proj.drop_duplicates(subset=['Player'])
display_Proj = display_Proj.set_index('Player')
elif sport_var2 == 'NFL':
if view_var2 == 'Simple':
display_Proj = raw_baselines[['Player', 'Position', 'Salary', 'Median', '20+%', 'Own']]
display_Proj = display_Proj.drop_duplicates(subset=['Player'])
display_Proj = display_Proj.set_index('Player')
elif view_var2 == 'Advanced':
display_Proj = raw_baselines[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
display_Proj = display_Proj.drop_duplicates(subset=['Player'])
display_Proj = display_Proj.set_index('Player')
display_Proj = display_Proj.sort_values(by='Median', ascending=False)
with hold_container:
hold_container = st.empty()
if sport_var2 == 'NBA':
st.dataframe(display_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(nba_player_roo_format, precision=2), height=1000, use_container_width = True)
elif sport_var2 == 'NFL':
st.dataframe(display_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(nfl_player_roo_format, precision=2), height=1000, use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(raw_baselines),
file_name='NFL_SD_export.csv',
mime='text/csv',
)
with tab2:
with st.expander('Info and Filters'):
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
nba_dk_sd_raw, nba_fd_sd_raw, nfl_dk_sd_raw, nfl_fd_sd_raw, nba_timestamp, nfl_dk_timestamp, nba_dk_id_dict, nfl_dk_id_dict, nba_fd_id_dict, nfl_fd_id_dict = init_baselines()
for key in st.session_state.keys():
del st.session_state[key]
sport_var1 = st.radio("What sport are you optimizing?", ('NBA', 'NFL'), key='sport_var1')
if sport_var1 == 'NBA':
dk_roo_raw = nba_dk_sd_raw
fd_roo_raw = nba_fd_sd_raw
elif sport_var1 == 'NFL':
dk_roo_raw = nfl_dk_sd_raw
fd_roo_raw = nfl_fd_sd_raw
slate_var1 = st.radio("Which data are you loading?", ('Paydirt (Main)', 'Paydirt (Secondary)', 'Paydirt (Auxiliary)'), key='slate_var1')
site_var1 = st.selectbox("What site is the showdown on?", ('Draftkings', 'Fanduel'), key='site_var1')
if site_var1 == 'Draftkings':
if slate_var1 == 'Paydirt (Main)':
raw_baselines = dk_roo_raw
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #1']
elif slate_var1 == 'Paydirt (Secondary)':
raw_baselines = dk_roo_raw
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #2']
elif slate_var1 == 'Paydirt (Auxiliary)':
raw_baselines = dk_roo_raw
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #3']
elif site_var1 == 'Fanduel':
if slate_var1 == 'Paydirt (Main)':
st.info("Showdown on Fanduel sucks, you should not do that, but I understand degen's gotta degen")
raw_baselines = fd_roo_raw
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #1']
elif slate_var1 == 'Paydirt (Secondary)':
st.info("Showdown on Fanduel sucks, you should not do that, but I understand degen's gotta degen")
raw_baselines = fd_roo_raw
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #2']
elif slate_var1 == 'Paydirt (Auxiliary)':
st.info("Showdown on Fanduel sucks, you should not do that, but I understand degen's gotta degen")
raw_baselines = fd_roo_raw
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #3']
contest_var1 = st.selectbox("What contest type are you optimizing for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var1')
lock_var1 = st.multiselect("Are there any players you want to use in all lineups in the CAPTAIN (Lock Button)?", options = raw_baselines['Player'].unique(), key='lock_var1')
lock_var2 = st.multiselect("Are there any players you want to use in all lineups in the FLEX (Lock Button)?", options = raw_baselines['Player'].unique(), key='lock_var2')
avoid_var1 = st.multiselect("Are there any players you want to remove from the pool (Drop Button)?", options = raw_baselines['Player'].unique(), key='avoid_var1')
trim_choice1 = st.selectbox("Allow overowned lineups?", options = ['Yes', 'No'])
linenum_var1 = st.number_input("How many lineups would you like to produce?", min_value = 1, max_value = 300, value = 20, step = 1, key='linenum_var1')
if trim_choice1 == 'Yes':
trim_var1 = 0
elif trim_choice1 == 'No':
trim_var1 = 1
if site_var1 == 'Draftkings':
min_sal1 = st.number_input('Min Salary', min_value = 35000, max_value = 49900, value = 49000, step = 100, key='min_sal1')
max_sal1 = st.number_input('Max Salary', min_value = 35000, max_value = 50000, value = 50000, step = 100, key='max_sal1')
elif site_var1 == 'Fanduel':
min_sal1 = st.number_input('Min Salary', min_value = 45000, max_value = 59900, value = 59000, step = 100, key='min_sal1')
max_sal1 = st.number_input('Max Salary', min_value = 45000, max_value = 60000, value = 60000, step = 100, key='max_sal1')
if contest_var1 == 'Small Field GPP':
ownframe = raw_baselines.copy()
if sport_var1 == 'NBA':
ownframe['Own'] = ownframe['Small_Own']
elif sport_var1 == 'NFL':
ownframe['Own'] = ownframe['Small_Field_Own']
elif contest_var1 == 'Large Field GPP':
ownframe = raw_baselines.copy()
if sport_var1 == 'NBA':
ownframe['Own'] = ownframe['Large_Own']
elif sport_var1 == 'NFL':
ownframe['Own'] = ownframe['Large_Field_Own']
elif contest_var1 == 'Cash':
ownframe = raw_baselines.copy()
if sport_var1 == 'NBA':
ownframe['Own'] = ownframe['Cash_Own']
elif sport_var1 == 'NFL':
ownframe['Own'] = ownframe['Cash_Field_Own']
export_baselines = ownframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own', 'CPT_Own', 'player_id']]
export_baselines['CPT_Proj'] = export_baselines['Median'] * 1.5
if sport_var1 == 'NBA':
export_baselines['CPT_Salary'] = export_baselines['Salary'] * 1.5
elif sport_var1 == 'NFL':
export_baselines['CPT_Salary'] = export_baselines['Salary']
export_baselines['salary'] = export_baselines['Salary'] / 1.5
export_baselines['ID'] = export_baselines['player_id']
display_baselines = ownframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own', 'CPT_Own']]
display_baselines = display_baselines.sort_values(by='Median', ascending=False)
display_baselines['cpt_lock'] = np.where(display_baselines['Player'].isin(lock_var1), 1, 0)
display_baselines['lock'] = np.where(display_baselines['Player'].isin(lock_var2), 1, 0)
display_baselines = display_baselines.drop_duplicates(subset=['Player'])
st.session_state.display_baselines = display_baselines.copy()
st.session_state.export_baselines = export_baselines.copy()
index_check = pd.DataFrame()
flex_proj = pd.DataFrame()
cpt_proj = pd.DataFrame()
if site_var1 == 'Draftkings':
cpt_proj['Player'] = display_baselines['Player']
if sport_var1 == 'NBA':
cpt_proj['Salary'] = display_baselines['Salary'] * 1.5
elif sport_var1 == 'NFL':
cpt_proj['Salary'] = display_baselines['Salary']
cpt_proj['Position'] = display_baselines['Position']
cpt_proj['Team'] = display_baselines['Team']
cpt_proj['Opp'] = display_baselines['Opp']
cpt_proj['Median'] = display_baselines['Median'] * 1.5
cpt_proj['Own'] = display_baselines['CPT_Own']
cpt_proj['lock'] = display_baselines['cpt_lock']
cpt_proj['roster'] = 'CPT'
if len(lock_var1) > 0:
cpt_proj = cpt_proj[cpt_proj['lock'] == 1]
if len(lock_var2) > 0:
cpt_proj = cpt_proj[~cpt_proj['Player'].isin(lock_var2)]
flex_proj['Player'] = display_baselines['Player']
if sport_var1 == 'NBA':
flex_proj['Salary'] = display_baselines['Salary']
elif sport_var1 == 'NFL':
flex_proj['Salary'] = display_baselines['Salary'] / 1.5
flex_proj['Position'] = display_baselines['Position']
flex_proj['Team'] = display_baselines['Team']
flex_proj['Opp'] = display_baselines['Opp']
flex_proj['Median'] = display_baselines['Median']
flex_proj['Own'] = display_baselines['Own']
flex_proj['lock'] = display_baselines['lock']
flex_proj['roster'] = 'FLEX'
elif site_var1 == 'Fanduel':
cpt_proj['Player'] = display_baselines['Player']
cpt_proj['Salary'] = display_baselines['Salary']
cpt_proj['Position'] = display_baselines['Position']
cpt_proj['Team'] = display_baselines['Team']
cpt_proj['Opp'] = display_baselines['Opp']
cpt_proj['Median'] = display_baselines['Median'] * 1.5
cpt_proj['Own'] = display_baselines['CPT Own'] * .75
cpt_proj['lock'] = display_baselines['cpt_lock']
cpt_proj['roster'] = 'CPT'
flex_proj['Player'] = display_baselines['Player']
flex_proj['Salary'] = display_baselines['Salary']
flex_proj['Position'] = display_baselines['Position']
flex_proj['Team'] = display_baselines['Team']
flex_proj['Opp'] = display_baselines['Opp']
flex_proj['Median'] = display_baselines['Median']
flex_proj['Own'] = display_baselines['Own']
flex_proj['lock'] = display_baselines['lock']
flex_proj['roster'] = 'FLEX'
combo_file = pd.concat([cpt_proj, flex_proj], ignore_index=True)
display_container = st.empty()
display_dl_container = st.empty()
optimize_container = st.empty()
download_container = st.empty()
freq_container = st.empty()
if st.button('Optimize'):
for key in st.session_state.keys():
del st.session_state[key]
max_proj = 1000
max_own = 1000
total_proj = 0
total_own = 0
display_container = st.empty()
display_dl_container = st.empty()
optimize_container = st.empty()
download_container = st.empty()
freq_container = st.empty()
lineup_display = []
check_list = []
lineups = []
portfolio = pd.DataFrame()
x = 1
with st.spinner('Wait for it...'):
with optimize_container:
while x <= linenum_var1:
sorted_lineup = []
p_used = []
raw_proj_file = combo_file
raw_flex_file = raw_proj_file.dropna(how='all')
raw_flex_file = raw_flex_file.loc[raw_flex_file['Median'] > 0]
flex_file = raw_flex_file
flex_file.rename(columns={"Own": "Proj DK Own%"}, inplace = True)
flex_file['name_var'] = flex_file['Player']
flex_file['lock'] = np.where(flex_file['Player'].isin(lock_var2), 1, 0)
flex_file = flex_file[~flex_file['Player'].isin(avoid_var1)]
flex_file['Player'] = np.where(flex_file['roster'] == 'CPT', flex_file['Player'] + ' - CPT', flex_file['Player'] + ' - FLEX')
player_ids = flex_file.index
overall_players = flex_file[['Player']]
overall_players['player_var_add'] = flex_file.index
overall_players['player_var'] = 'player_vars_' + overall_players['player_var_add'].astype(str)
player_vars = pulp.LpVariable.dicts("player_vars", flex_file.index, 0, 1, pulp.LpInteger)
total_score = pulp.LpProblem("Fantasy_Points_Problem", pulp.LpMaximize)
player_match = dict(zip(overall_players['player_var'], overall_players['Player']))
player_index_match = dict(zip(overall_players['player_var'], overall_players['player_var_add']))
player_own = dict(zip(flex_file['Player'], flex_file['Proj DK Own%']))
player_team = dict(zip(flex_file['Player'], flex_file['Team']))
player_pos = dict(zip(flex_file['Player'], flex_file['Position']))
player_sal = dict(zip(flex_file['Player'], flex_file['Salary']))
player_proj = dict(zip(flex_file['Player'], flex_file['Median']))
obj_points = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
obj_points_max = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
obj_own_max = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index}
obj_salary = {idx: (flex_file['Salary'][idx]) for idx in flex_file.index}
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) <= max_sal1
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) >= min_sal1
if site_var1 == 'Draftkings':
for flex in flex_file['lock'].unique():
sub_idx = flex_file[flex_file['lock'] == 1].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var2)
for flex in flex_file['roster'].unique():
sub_idx = flex_file[flex_file['roster'] == "CPT"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
for flex in flex_file['roster'].unique():
sub_idx = flex_file[flex_file['roster'] == "FLEX"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 5
for playerid in player_ids:
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['name_var'][i] == flex_file['name_var'][playerid])]) <= 1
elif site_var1 == 'Fanduel':
for flex in flex_file['lock'].unique():
sub_idx = flex_file[flex_file['lock'] == 1].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var2)
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] != "Var"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 5
for flex in flex_file['roster'].unique():
sub_idx = flex_file[flex_file['roster'] == "CPT"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
for playerid in player_ids:
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['name_var'][i] == flex_file['name_var'][playerid])]) <= 1
player_count = []
player_trim = []
lineup_list = []
if contest_var1 == 'Cash':
obj_points = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index}
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
total_score += pulp.lpSum([player_vars[idx]*obj_points[idx] for idx in flex_file.index]) <= max_own - .001
elif contest_var1 != 'Cash':
obj_points = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
total_score += pulp.lpSum([player_vars[idx]*obj_points[idx] for idx in flex_file.index]) <= max_proj - .01
if trim_var1 == 1:
total_score += pulp.lpSum([player_vars[idx]*obj_own_max[idx] for idx in flex_file.index]) <= max_own - .001
total_score.solve()
for v in total_score.variables():
if v.varValue > 0:
lineup_list.append(v.name)
df = pd.DataFrame(lineup_list)
df['Names'] = df[0].map(player_match)
df['Cost'] = df['Names'].map(player_sal)
df['Proj'] = df['Names'].map(player_proj)
df['Own'] = df['Names'].map(player_own)
total_cost = sum(df['Cost'])
total_own = sum(df['Own'])
total_proj = sum(df['Proj'])
lineup_raw = pd.DataFrame(lineup_list)
lineup_raw['Names'] = lineup_raw[0].map(player_match)
lineup_raw['value'] = lineup_raw[0].map(player_index_match)
lineup_final = lineup_raw.sort_values(by=['value'])
del lineup_final[lineup_final.columns[0]]
del lineup_final[lineup_final.columns[1]]
lineup_final['Team'] = lineup_final['Names'].map(player_team)
lineup_final['Position'] = lineup_final['Names'].map(player_pos)
lineup_final['Salary'] = lineup_final['Names'].map(player_sal)
lineup_final['Proj'] = lineup_final['Names'].map(player_proj)
lineup_final['Own'] = lineup_final['Names'].map(player_own)
lineup_final.loc['Column_Total'] = lineup_final.sum(numeric_only=True, axis=0)
lineup_final = lineup_final.reset_index(drop=True)
max_proj = total_proj
max_own = total_own
if site_var1 == 'Draftkings':
if len(lineup_final) == 7:
port_display = pd.DataFrame(lineup_final['Names'][:-1].values.reshape(1, -1))
port_display['Cost'] = total_cost
port_display['Proj'] = total_proj
port_display['Own'] = total_own
st.table(port_display)
portfolio = pd.concat([portfolio, port_display], ignore_index = True)
elif site_var1 == 'Fanduel':
if len(lineup_final) == 6:
port_display = pd.DataFrame(lineup_final['Names'][:-1].values.reshape(1, -1))
port_display['Cost'] = total_cost
port_display['Proj'] = total_proj
port_display['Own'] = total_own
st.table(port_display)
portfolio = pd.concat([portfolio, port_display], ignore_index = True)
x += 1
if site_var1 == 'Draftkings':
portfolio.rename(columns={0: "CPT", 1: "FLEX1", 2: "FLEX2", 3: "FLEX3", 4: "FLEX4", 5: "FLEX5"}, inplace = True)
elif site_var1 == 'Fanduel':
portfolio.rename(columns={0: "MVP", 1: "FLEX1", 2: "FLEX2", 3: "FLEX3", 4: "FLEX4"}, inplace = True)
portfolio = portfolio.dropna()
portfolio = portfolio.reset_index()
portfolio['Lineup_num'] = portfolio['index'] + 1
portfolio.rename(columns={'Lineup_num': "Lineup"}, inplace = True)
portfolio = portfolio.set_index('Lineup')
portfolio = portfolio.drop(columns=['index'])
st.session_state.portfolio = portfolio.drop_duplicates()
final_outcomes = portfolio
st.session_state.final_outcomes = portfolio
player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.portfolio.iloc[:,0:6].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
player_freq['Freq'] = player_freq['Freq'].astype(int)
player_freq['Position'] = player_freq['Player'].map(player_pos)
player_freq['Salary'] = player_freq['Player'].map(player_sal)
player_freq['Proj Own'] = player_freq['Player'].map(player_own) / 100
player_freq['Exposure'] = player_freq['Freq']/(linenum_var1)
player_freq['Team'] = player_freq['Player'].map(player_team)
final_outcomes_export = pd.DataFrame()
split_portfolio = pd.DataFrame()
if site_var1 == 'Draftkings':
split_portfolio[['CPT', 'CPT_ID']] = final_outcomes.CPT.str.split("-", n=1, expand = True)
split_portfolio[['FLEX1', 'FLEX1_ID']] = final_outcomes.FLEX1.str.split("-", n=1, expand = True)
split_portfolio[['FLEX2', 'FLEX2_ID']] = final_outcomes.FLEX2.str.split("-", n=1, expand = True)
split_portfolio[['FLEX3', 'FLEX3_ID']] = final_outcomes.FLEX3.str.split("-", n=1, expand = True)
split_portfolio[['FLEX4', 'FLEX4_ID']] = final_outcomes.FLEX4.str.split("-", n=1, expand = True)
split_portfolio[['FLEX5', 'FLEX5_ID']] = final_outcomes.FLEX5.str.split("-", n=1, expand = True)
split_portfolio['CPT'] = split_portfolio['CPT'].str.strip()
split_portfolio['FLEX1'] = split_portfolio['FLEX1'].str.strip()
split_portfolio['FLEX2'] = split_portfolio['FLEX2'].str.strip()
split_portfolio['FLEX3'] = split_portfolio['FLEX3'].str.strip()
split_portfolio['FLEX4'] = split_portfolio['FLEX4'].str.strip()
split_portfolio['FLEX5'] = split_portfolio['FLEX5'].str.strip()
final_outcomes_export['CPT'] = split_portfolio['CPT']
final_outcomes_export['FLEX1'] = split_portfolio['FLEX1']
final_outcomes_export['FLEX2'] = split_portfolio['FLEX2']
final_outcomes_export['FLEX3'] = split_portfolio['FLEX3']
final_outcomes_export['FLEX4'] = split_portfolio['FLEX4']
final_outcomes_export['FLEX5'] = split_portfolio['FLEX5']
if sport_var1 == 'NFL':
final_outcomes_export['CPT'].replace(nfl_dk_id_dict, inplace=True)
final_outcomes_export['FLEX1'].replace(nfl_dk_id_dict, inplace=True)
final_outcomes_export['FLEX2'].replace(nfl_dk_id_dict, inplace=True)
final_outcomes_export['FLEX3'].replace(nfl_dk_id_dict, inplace=True)
final_outcomes_export['FLEX4'].replace(nfl_dk_id_dict, inplace=True)
final_outcomes_export['FLEX5'].replace(nfl_dk_id_dict, inplace=True)
elif sport_var1 == 'NBA':
final_outcomes_export['CPT'].replace(nba_dk_id_dict, inplace=True)
final_outcomes_export['FLEX1'].replace(nba_dk_id_dict, inplace=True)
final_outcomes_export['FLEX2'].replace(nba_dk_id_dict, inplace=True)
final_outcomes_export['FLEX3'].replace(nba_dk_id_dict, inplace=True)
final_outcomes_export['FLEX4'].replace(nba_dk_id_dict, inplace=True)
final_outcomes_export['FLEX5'].replace(nba_dk_id_dict, inplace=True)
final_outcomes_export['Salary'] = final_outcomes['Cost']
final_outcomes_export['Own'] = final_outcomes['Own']
final_outcomes_export['Proj'] = final_outcomes['Proj']
st.session_state.final_outcomes_export = final_outcomes_export.copy()
elif site_var1 == 'Fanduel':
split_portfolio[['MVP', 'CPT_ID']] = final_outcomes.MVP.str.split("-", n=1, expand = True)
split_portfolio[['FLEX1', 'FLEX1_ID']] = final_outcomes.FLEX1.str.split("-", n=1, expand = True)
split_portfolio[['FLEX2', 'FLEX2_ID']] = final_outcomes.FLEX2.str.split("-", n=1, expand = True)
split_portfolio[['FLEX3', 'FLEX3_ID']] = final_outcomes.FLEX3.str.split("-", n=1, expand = True)
split_portfolio[['FLEX4', 'FLEX4_ID']] = final_outcomes.FLEX4.str.split("-", n=1, expand = True)
split_portfolio['MVP'] = split_portfolio['MVP'].str.strip()
split_portfolio['FLEX1'] = split_portfolio['FLEX1'].str.strip()
split_portfolio['FLEX2'] = split_portfolio['FLEX2'].str.strip()
split_portfolio['FLEX3'] = split_portfolio['FLEX3'].str.strip()
split_portfolio['FLEX4'] = split_portfolio['FLEX4'].str.strip()
final_outcomes_export['MVP'] = split_portfolio['MVP']
final_outcomes_export['FLEX1'] = split_portfolio['FLEX1']
final_outcomes_export['FLEX2'] = split_portfolio['FLEX2']
final_outcomes_export['FLEX3'] = split_portfolio['FLEX3']
final_outcomes_export['FLEX4'] = split_portfolio['FLEX4']
if sport_var1 == 'NFL':
final_outcomes_export['MVP'].replace(nfl_fd_id_dict, inplace=True)
final_outcomes_export['FLEX1'].replace(nfl_fd_id_dict, inplace=True)
final_outcomes_export['FLEX2'].replace(nfl_fd_id_dict, inplace=True)
final_outcomes_export['FLEX3'].replace(nfl_fd_id_dict, inplace=True)
final_outcomes_export['FLEX4'].replace(nfl_fd_id_dict, inplace=True)
elif sport_var1 == 'NBA':
final_outcomes_export['MVP'].replace(nba_fd_id_dict, inplace=True)
final_outcomes_export['FLEX1'].replace(nba_fd_id_dict, inplace=True)
final_outcomes_export['FLEX2'].replace(nba_fd_id_dict, inplace=True)
final_outcomes_export['FLEX3'].replace(nba_fd_id_dict, inplace=True)
final_outcomes_export['FLEX4'].replace(nba_fd_id_dict, inplace=True)
final_outcomes_export['Salary'] = final_outcomes['Cost']
final_outcomes_export['Own'] = final_outcomes['Own']
final_outcomes_export['Proj'] = final_outcomes['Proj']
st.session_state.FD_final_outcomes_export = final_outcomes_export.copy()
st.session_state.player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure']]
with display_container:
display_container = st.empty()
if 'display_baselines' in st.session_state:
st.dataframe(st.session_state.display_baselines.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with display_dl_container:
display_dl_container = st.empty()
if 'export_baselines' in st.session_state:
st.download_button(
label="Export Projections",
data=convert_df_to_csv(st.session_state.export_baselines),
file_name='showdown_proj_export.csv',
mime='text/csv',
)
with optimize_container:
optimize_container = st.empty()
if 'final_outcomes' in st.session_state:
st.dataframe(st.session_state.final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with download_container:
download_container = st.empty()
if site_var1 == 'Draftkings':
if 'final_outcomes_export' in st.session_state:
st.download_button(
label="Export Optimals",
data=convert_df_to_csv(st.session_state.final_outcomes_export),
file_name='NFL_optimals_export.csv',
mime='text/csv',
)
elif site_var1 == 'Fanduel':
if 'FD_final_outcomes_export' in st.session_state:
st.download_button(
label="Export Optimals",
data=convert_df_to_csv(st.session_state.FD_final_outcomes_export),
file_name='FD_NFL_optimals_export.csv',
mime='text/csv',
)
with freq_container:
freq_container = st.empty()
if 'player_freq' in st.session_state:
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(expose_format, precision=2), use_container_width = True)