NCTCMumbai's picture
Upload 2571 files
0b8359d
|
raw
history blame
4.95 kB
![TensorFlow Requirement: 1.x](https://img.shields.io/badge/TensorFlow%20Requirement-1.x-brightgreen)
![TensorFlow 2 Not Supported](https://img.shields.io/badge/TensorFlow%202%20Not%20Supported-%E2%9C%95-red.svg)
# Adversarial Text Classification
Code for [*Adversarial Training Methods for Semi-Supervised Text Classification*](https://arxiv.org/abs/1605.07725) and [*Semi-Supervised Sequence Learning*](https://arxiv.org/abs/1511.01432).
## Requirements
* TensorFlow >= v1.3
## End-to-end IMDB Sentiment Classification
### Fetch data
```bash
$ wget http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz \
-O /tmp/imdb.tar.gz
$ tar -xf /tmp/imdb.tar.gz -C /tmp
```
The directory `/tmp/aclImdb` contains the raw IMDB data.
### Generate vocabulary
```bash
$ IMDB_DATA_DIR=/tmp/imdb
$ python gen_vocab.py \
--output_dir=$IMDB_DATA_DIR \
--dataset=imdb \
--imdb_input_dir=/tmp/aclImdb \
--lowercase=False
```
Vocabulary and frequency files will be generated in `$IMDB_DATA_DIR`.
###  Generate training, validation, and test data
```bash
$ python gen_data.py \
--output_dir=$IMDB_DATA_DIR \
--dataset=imdb \
--imdb_input_dir=/tmp/aclImdb \
--lowercase=False \
--label_gain=False
```
`$IMDB_DATA_DIR` contains TFRecords files.
### Pretrain IMDB Language Model
```bash
$ PRETRAIN_DIR=/tmp/models/imdb_pretrain
$ python pretrain.py \
--train_dir=$PRETRAIN_DIR \
--data_dir=$IMDB_DATA_DIR \
--vocab_size=86934 \
--embedding_dims=256 \
--rnn_cell_size=1024 \
--num_candidate_samples=1024 \
--batch_size=256 \
--learning_rate=0.001 \
--learning_rate_decay_factor=0.9999 \
--max_steps=100000 \
--max_grad_norm=1.0 \
--num_timesteps=400 \
--keep_prob_emb=0.5 \
--normalize_embeddings
```
`$PRETRAIN_DIR` contains checkpoints of the pretrained language model.
### Train classifier
Most flags stay the same, save for the removal of candidate sampling and the
addition of `pretrained_model_dir`, from which the classifier will load the
pretrained embedding and LSTM variables, and flags related to adversarial
training and classification.
```bash
$ TRAIN_DIR=/tmp/models/imdb_classify
$ python train_classifier.py \
--train_dir=$TRAIN_DIR \
--pretrained_model_dir=$PRETRAIN_DIR \
--data_dir=$IMDB_DATA_DIR \
--vocab_size=86934 \
--embedding_dims=256 \
--rnn_cell_size=1024 \
--cl_num_layers=1 \
--cl_hidden_size=30 \
--batch_size=64 \
--learning_rate=0.0005 \
--learning_rate_decay_factor=0.9998 \
--max_steps=15000 \
--max_grad_norm=1.0 \
--num_timesteps=400 \
--keep_prob_emb=0.5 \
--normalize_embeddings \
--adv_training_method=vat \
--perturb_norm_length=5.0
```
### Evaluate on test data
```bash
$ EVAL_DIR=/tmp/models/imdb_eval
$ python evaluate.py \
--eval_dir=$EVAL_DIR \
--checkpoint_dir=$TRAIN_DIR \
--eval_data=test \
--run_once \
--num_examples=25000 \
--data_dir=$IMDB_DATA_DIR \
--vocab_size=86934 \
--embedding_dims=256 \
--rnn_cell_size=1024 \
--batch_size=256 \
--num_timesteps=400 \
--normalize_embeddings
```
## Code Overview
The main entry points are the binaries listed below. Each training binary builds
a `VatxtModel`, defined in `graphs.py`, which in turn uses graph building blocks
defined in `inputs.py` (defines input data reading and parsing), `layers.py`
(defines core model components), and `adversarial_losses.py` (defines
adversarial training losses). The training loop itself is defined in
`train_utils.py`.
### Binaries
* Pretraining: `pretrain.py`
* Classifier Training: `train_classifier.py`
* Evaluation: `evaluate.py`
### Command-Line Flags
Flags related to distributed training and the training loop itself are defined
in [`train_utils.py`](https://github.com/tensorflow/models/tree/master/research/adversarial_text/train_utils.py).
Flags related to model hyperparameters are defined in [`graphs.py`](https://github.com/tensorflow/models/tree/master/research/adversarial_text/graphs.py).
Flags related to adversarial training are defined in [`adversarial_losses.py`](https://github.com/tensorflow/models/tree/master/research/adversarial_text/adversarial_losses.py).
Flags particular to each job are defined in the main binary files.
### Data Generation
* Vocabulary generation: [`gen_vocab.py`](https://github.com/tensorflow/models/tree/master/research/adversarial_text/gen_vocab.py)
* Data generation: [`gen_data.py`](https://github.com/tensorflow/models/tree/master/research/adversarial_text/gen_data.py)
Command-line flags defined in [`document_generators.py`](https://github.com/tensorflow/models/tree/master/research/adversarial_text/data/document_generators.py)
control which dataset is processed and how.
## Contact for Issues
* Ryan Sepassi, @rsepassi
* Andrew M. Dai, @a-dai <adai@google.com>
* Takeru Miyato, @takerum (Original implementation)