Spaces:
Running
Running
# Lint as: python2, python3 | |
# Copyright 2018 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Converts ADE20K data to TFRecord file format with Example protos.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import math | |
import os | |
import random | |
import sys | |
import build_data | |
from six.moves import range | |
import tensorflow as tf | |
FLAGS = tf.app.flags.FLAGS | |
tf.app.flags.DEFINE_string( | |
'train_image_folder', | |
'./ADE20K/ADEChallengeData2016/images/training', | |
'Folder containing trainng images') | |
tf.app.flags.DEFINE_string( | |
'train_image_label_folder', | |
'./ADE20K/ADEChallengeData2016/annotations/training', | |
'Folder containing annotations for trainng images') | |
tf.app.flags.DEFINE_string( | |
'val_image_folder', | |
'./ADE20K/ADEChallengeData2016/images/validation', | |
'Folder containing validation images') | |
tf.app.flags.DEFINE_string( | |
'val_image_label_folder', | |
'./ADE20K/ADEChallengeData2016/annotations/validation', | |
'Folder containing annotations for validation') | |
tf.app.flags.DEFINE_string( | |
'output_dir', './ADE20K/tfrecord', | |
'Path to save converted tfrecord of Tensorflow example') | |
_NUM_SHARDS = 4 | |
def _convert_dataset(dataset_split, dataset_dir, dataset_label_dir): | |
"""Converts the ADE20k dataset into into tfrecord format. | |
Args: | |
dataset_split: Dataset split (e.g., train, val). | |
dataset_dir: Dir in which the dataset locates. | |
dataset_label_dir: Dir in which the annotations locates. | |
Raises: | |
RuntimeError: If loaded image and label have different shape. | |
""" | |
img_names = tf.gfile.Glob(os.path.join(dataset_dir, '*.jpg')) | |
random.shuffle(img_names) | |
seg_names = [] | |
for f in img_names: | |
# get the filename without the extension | |
basename = os.path.basename(f).split('.')[0] | |
# cover its corresponding *_seg.png | |
seg = os.path.join(dataset_label_dir, basename+'.png') | |
seg_names.append(seg) | |
num_images = len(img_names) | |
num_per_shard = int(math.ceil(num_images / _NUM_SHARDS)) | |
image_reader = build_data.ImageReader('jpeg', channels=3) | |
label_reader = build_data.ImageReader('png', channels=1) | |
for shard_id in range(_NUM_SHARDS): | |
output_filename = os.path.join( | |
FLAGS.output_dir, | |
'%s-%05d-of-%05d.tfrecord' % (dataset_split, shard_id, _NUM_SHARDS)) | |
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer: | |
start_idx = shard_id * num_per_shard | |
end_idx = min((shard_id + 1) * num_per_shard, num_images) | |
for i in range(start_idx, end_idx): | |
sys.stdout.write('\r>> Converting image %d/%d shard %d' % ( | |
i + 1, num_images, shard_id)) | |
sys.stdout.flush() | |
# Read the image. | |
image_filename = img_names[i] | |
image_data = tf.gfile.FastGFile(image_filename, 'rb').read() | |
height, width = image_reader.read_image_dims(image_data) | |
# Read the semantic segmentation annotation. | |
seg_filename = seg_names[i] | |
seg_data = tf.gfile.FastGFile(seg_filename, 'rb').read() | |
seg_height, seg_width = label_reader.read_image_dims(seg_data) | |
if height != seg_height or width != seg_width: | |
raise RuntimeError('Shape mismatched between image and label.') | |
# Convert to tf example. | |
example = build_data.image_seg_to_tfexample( | |
image_data, img_names[i], height, width, seg_data) | |
tfrecord_writer.write(example.SerializeToString()) | |
sys.stdout.write('\n') | |
sys.stdout.flush() | |
def main(unused_argv): | |
tf.gfile.MakeDirs(FLAGS.output_dir) | |
_convert_dataset( | |
'train', FLAGS.train_image_folder, FLAGS.train_image_label_folder) | |
_convert_dataset('val', FLAGS.val_image_folder, FLAGS.val_image_label_folder) | |
if __name__ == '__main__': | |
tf.app.run() | |