NCTC / models /research /deeplab /model_test.py
NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
5.46 kB
# Lint as: python2, python3
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for DeepLab model and some helper functions."""
import tensorflow as tf
from deeplab import common
from deeplab import model
class DeeplabModelTest(tf.test.TestCase):
def testWrongDeepLabVariant(self):
model_options = common.ModelOptions([])._replace(
model_variant='no_such_variant')
with self.assertRaises(ValueError):
model._get_logits(images=[], model_options=model_options)
def testBuildDeepLabv2(self):
batch_size = 2
crop_size = [41, 41]
# Test with two image_pyramids.
image_pyramids = [[1], [0.5, 1]]
# Test two model variants.
model_variants = ['xception_65', 'mobilenet_v2']
# Test with two output_types.
outputs_to_num_classes = {'semantic': 3,
'direction': 2}
expected_endpoints = [['merged_logits'],
['merged_logits',
'logits_0.50',
'logits_1.00']]
expected_num_logits = [1, 3]
for model_variant in model_variants:
model_options = common.ModelOptions(outputs_to_num_classes)._replace(
add_image_level_feature=False,
aspp_with_batch_norm=False,
aspp_with_separable_conv=False,
model_variant=model_variant)
for i, image_pyramid in enumerate(image_pyramids):
g = tf.Graph()
with g.as_default():
with self.test_session(graph=g):
inputs = tf.random_uniform(
(batch_size, crop_size[0], crop_size[1], 3))
outputs_to_scales_to_logits = model.multi_scale_logits(
inputs, model_options, image_pyramid=image_pyramid)
# Check computed results for each output type.
for output in outputs_to_num_classes:
scales_to_logits = outputs_to_scales_to_logits[output]
self.assertListEqual(sorted(scales_to_logits.keys()),
sorted(expected_endpoints[i]))
# Expected number of logits = len(image_pyramid) + 1, since the
# last logits is merged from all the scales.
self.assertEqual(len(scales_to_logits), expected_num_logits[i])
def testForwardpassDeepLabv3plus(self):
crop_size = [33, 33]
outputs_to_num_classes = {'semantic': 3}
model_options = common.ModelOptions(
outputs_to_num_classes,
crop_size,
output_stride=16
)._replace(
add_image_level_feature=True,
aspp_with_batch_norm=True,
logits_kernel_size=1,
decoder_output_stride=[4],
model_variant='mobilenet_v2') # Employ MobileNetv2 for fast test.
g = tf.Graph()
with g.as_default():
with self.test_session(graph=g) as sess:
inputs = tf.random_uniform(
(1, crop_size[0], crop_size[1], 3))
outputs_to_scales_to_logits = model.multi_scale_logits(
inputs,
model_options,
image_pyramid=[1.0])
sess.run(tf.global_variables_initializer())
outputs_to_scales_to_logits = sess.run(outputs_to_scales_to_logits)
# Check computed results for each output type.
for output in outputs_to_num_classes:
scales_to_logits = outputs_to_scales_to_logits[output]
# Expect only one output.
self.assertEqual(len(scales_to_logits), 1)
for logits in scales_to_logits.values():
self.assertTrue(logits.any())
def testBuildDeepLabWithDensePredictionCell(self):
batch_size = 1
crop_size = [33, 33]
outputs_to_num_classes = {'semantic': 2}
expected_endpoints = ['merged_logits']
dense_prediction_cell_config = [
{'kernel': 3, 'rate': [1, 6], 'op': 'conv', 'input': -1},
{'kernel': 3, 'rate': [18, 15], 'op': 'conv', 'input': 0},
]
model_options = common.ModelOptions(
outputs_to_num_classes,
crop_size,
output_stride=16)._replace(
aspp_with_batch_norm=True,
model_variant='mobilenet_v2',
dense_prediction_cell_config=dense_prediction_cell_config)
g = tf.Graph()
with g.as_default():
with self.test_session(graph=g):
inputs = tf.random_uniform(
(batch_size, crop_size[0], crop_size[1], 3))
outputs_to_scales_to_model_results = model.multi_scale_logits(
inputs,
model_options,
image_pyramid=[1.0])
for output in outputs_to_num_classes:
scales_to_model_results = outputs_to_scales_to_model_results[output]
self.assertListEqual(
list(scales_to_model_results), expected_endpoints)
self.assertEqual(len(scales_to_model_results), 1)
if __name__ == '__main__':
tf.test.main()