Spaces:
Running
Running
# Lint as: python2, python3 | |
# Copyright 2018 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Training script for the DeepLab model. | |
See model.py for more details and usage. | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import six | |
import tensorflow as tf | |
from tensorflow.contrib import quantize as contrib_quantize | |
from tensorflow.contrib import tfprof as contrib_tfprof | |
from deeplab import common | |
from deeplab import model | |
from deeplab.datasets import data_generator | |
from deeplab.utils import train_utils | |
from deployment import model_deploy | |
slim = tf.contrib.slim | |
flags = tf.app.flags | |
FLAGS = flags.FLAGS | |
# Settings for multi-GPUs/multi-replicas training. | |
flags.DEFINE_integer('num_clones', 1, 'Number of clones to deploy.') | |
flags.DEFINE_boolean('clone_on_cpu', False, 'Use CPUs to deploy clones.') | |
flags.DEFINE_integer('num_replicas', 1, 'Number of worker replicas.') | |
flags.DEFINE_integer('startup_delay_steps', 15, | |
'Number of training steps between replicas startup.') | |
flags.DEFINE_integer( | |
'num_ps_tasks', 0, | |
'The number of parameter servers. If the value is 0, then ' | |
'the parameters are handled locally by the worker.') | |
flags.DEFINE_string('master', '', 'BNS name of the tensorflow server') | |
flags.DEFINE_integer('task', 0, 'The task ID.') | |
# Settings for logging. | |
flags.DEFINE_string('train_logdir', None, | |
'Where the checkpoint and logs are stored.') | |
flags.DEFINE_integer('log_steps', 10, | |
'Display logging information at every log_steps.') | |
flags.DEFINE_integer('save_interval_secs', 1200, | |
'How often, in seconds, we save the model to disk.') | |
flags.DEFINE_integer('save_summaries_secs', 600, | |
'How often, in seconds, we compute the summaries.') | |
flags.DEFINE_boolean( | |
'save_summaries_images', False, | |
'Save sample inputs, labels, and semantic predictions as ' | |
'images to summary.') | |
# Settings for profiling. | |
flags.DEFINE_string('profile_logdir', None, | |
'Where the profile files are stored.') | |
# Settings for training strategy. | |
flags.DEFINE_enum('optimizer', 'momentum', ['momentum', 'adam'], | |
'Which optimizer to use.') | |
# Momentum optimizer flags | |
flags.DEFINE_enum('learning_policy', 'poly', ['poly', 'step'], | |
'Learning rate policy for training.') | |
# Use 0.007 when training on PASCAL augmented training set, train_aug. When | |
# fine-tuning on PASCAL trainval set, use learning rate=0.0001. | |
flags.DEFINE_float('base_learning_rate', .0001, | |
'The base learning rate for model training.') | |
flags.DEFINE_float('decay_steps', 0.0, | |
'Decay steps for polynomial learning rate schedule.') | |
flags.DEFINE_float('end_learning_rate', 0.0, | |
'End learning rate for polynomial learning rate schedule.') | |
flags.DEFINE_float('learning_rate_decay_factor', 0.1, | |
'The rate to decay the base learning rate.') | |
flags.DEFINE_integer('learning_rate_decay_step', 2000, | |
'Decay the base learning rate at a fixed step.') | |
flags.DEFINE_float('learning_power', 0.9, | |
'The power value used in the poly learning policy.') | |
flags.DEFINE_integer('training_number_of_steps', 30000, | |
'The number of steps used for training') | |
flags.DEFINE_float('momentum', 0.9, 'The momentum value to use') | |
# Adam optimizer flags | |
flags.DEFINE_float('adam_learning_rate', 0.001, | |
'Learning rate for the adam optimizer.') | |
flags.DEFINE_float('adam_epsilon', 1e-08, 'Adam optimizer epsilon.') | |
# When fine_tune_batch_norm=True, use at least batch size larger than 12 | |
# (batch size more than 16 is better). Otherwise, one could use smaller batch | |
# size and set fine_tune_batch_norm=False. | |
flags.DEFINE_integer('train_batch_size', 8, | |
'The number of images in each batch during training.') | |
# For weight_decay, use 0.00004 for MobileNet-V2 or Xcpetion model variants. | |
# Use 0.0001 for ResNet model variants. | |
flags.DEFINE_float('weight_decay', 0.00004, | |
'The value of the weight decay for training.') | |
flags.DEFINE_list('train_crop_size', '513,513', | |
'Image crop size [height, width] during training.') | |
flags.DEFINE_float( | |
'last_layer_gradient_multiplier', 1.0, | |
'The gradient multiplier for last layers, which is used to ' | |
'boost the gradient of last layers if the value > 1.') | |
flags.DEFINE_boolean('upsample_logits', True, | |
'Upsample logits during training.') | |
# Hyper-parameters for NAS training strategy. | |
flags.DEFINE_float( | |
'drop_path_keep_prob', 1.0, | |
'Probability to keep each path in the NAS cell when training.') | |
# Settings for fine-tuning the network. | |
flags.DEFINE_string('tf_initial_checkpoint', None, | |
'The initial checkpoint in tensorflow format.') | |
# Set to False if one does not want to re-use the trained classifier weights. | |
flags.DEFINE_boolean('initialize_last_layer', True, | |
'Initialize the last layer.') | |
flags.DEFINE_boolean('last_layers_contain_logits_only', False, | |
'Only consider logits as last layers or not.') | |
flags.DEFINE_integer('slow_start_step', 0, | |
'Training model with small learning rate for few steps.') | |
flags.DEFINE_float('slow_start_learning_rate', 1e-4, | |
'Learning rate employed during slow start.') | |
# Set to True if one wants to fine-tune the batch norm parameters in DeepLabv3. | |
# Set to False and use small batch size to save GPU memory. | |
flags.DEFINE_boolean('fine_tune_batch_norm', True, | |
'Fine tune the batch norm parameters or not.') | |
flags.DEFINE_float('min_scale_factor', 0.5, | |
'Mininum scale factor for data augmentation.') | |
flags.DEFINE_float('max_scale_factor', 2., | |
'Maximum scale factor for data augmentation.') | |
flags.DEFINE_float('scale_factor_step_size', 0.25, | |
'Scale factor step size for data augmentation.') | |
# For `xception_65`, use atrous_rates = [12, 24, 36] if output_stride = 8, or | |
# rates = [6, 12, 18] if output_stride = 16. For `mobilenet_v2`, use None. Note | |
# one could use different atrous_rates/output_stride during training/evaluation. | |
flags.DEFINE_multi_integer('atrous_rates', None, | |
'Atrous rates for atrous spatial pyramid pooling.') | |
flags.DEFINE_integer('output_stride', 16, | |
'The ratio of input to output spatial resolution.') | |
# Hard example mining related flags. | |
flags.DEFINE_integer( | |
'hard_example_mining_step', 0, | |
'The training step in which exact hard example mining kicks off. Note we ' | |
'gradually reduce the mining percent to the specified ' | |
'top_k_percent_pixels. For example, if hard_example_mining_step=100K and ' | |
'top_k_percent_pixels=0.25, then mining percent will gradually reduce from ' | |
'100% to 25% until 100K steps after which we only mine top 25% pixels.') | |
flags.DEFINE_float( | |
'top_k_percent_pixels', 1.0, | |
'The top k percent pixels (in terms of the loss values) used to compute ' | |
'loss during training. This is useful for hard pixel mining.') | |
# Quantization setting. | |
flags.DEFINE_integer( | |
'quantize_delay_step', -1, | |
'Steps to start quantized training. If < 0, will not quantize model.') | |
# Dataset settings. | |
flags.DEFINE_string('dataset', 'pascal_voc_seg', | |
'Name of the segmentation dataset.') | |
flags.DEFINE_string('train_split', 'train', | |
'Which split of the dataset to be used for training') | |
flags.DEFINE_string('dataset_dir', None, 'Where the dataset reside.') | |
def _build_deeplab(iterator, outputs_to_num_classes, ignore_label): | |
"""Builds a clone of DeepLab. | |
Args: | |
iterator: An iterator of type tf.data.Iterator for images and labels. | |
outputs_to_num_classes: A map from output type to the number of classes. For | |
example, for the task of semantic segmentation with 21 semantic classes, | |
we would have outputs_to_num_classes['semantic'] = 21. | |
ignore_label: Ignore label. | |
""" | |
samples = iterator.get_next() | |
# Add name to input and label nodes so we can add to summary. | |
samples[common.IMAGE] = tf.identity(samples[common.IMAGE], name=common.IMAGE) | |
samples[common.LABEL] = tf.identity(samples[common.LABEL], name=common.LABEL) | |
model_options = common.ModelOptions( | |
outputs_to_num_classes=outputs_to_num_classes, | |
crop_size=[int(sz) for sz in FLAGS.train_crop_size], | |
atrous_rates=FLAGS.atrous_rates, | |
output_stride=FLAGS.output_stride) | |
outputs_to_scales_to_logits = model.multi_scale_logits( | |
samples[common.IMAGE], | |
model_options=model_options, | |
image_pyramid=FLAGS.image_pyramid, | |
weight_decay=FLAGS.weight_decay, | |
is_training=True, | |
fine_tune_batch_norm=FLAGS.fine_tune_batch_norm, | |
nas_training_hyper_parameters={ | |
'drop_path_keep_prob': FLAGS.drop_path_keep_prob, | |
'total_training_steps': FLAGS.training_number_of_steps, | |
}) | |
# Add name to graph node so we can add to summary. | |
output_type_dict = outputs_to_scales_to_logits[common.OUTPUT_TYPE] | |
output_type_dict[model.MERGED_LOGITS_SCOPE] = tf.identity( | |
output_type_dict[model.MERGED_LOGITS_SCOPE], name=common.OUTPUT_TYPE) | |
for output, num_classes in six.iteritems(outputs_to_num_classes): | |
train_utils.add_softmax_cross_entropy_loss_for_each_scale( | |
outputs_to_scales_to_logits[output], | |
samples[common.LABEL], | |
num_classes, | |
ignore_label, | |
loss_weight=model_options.label_weights, | |
upsample_logits=FLAGS.upsample_logits, | |
hard_example_mining_step=FLAGS.hard_example_mining_step, | |
top_k_percent_pixels=FLAGS.top_k_percent_pixels, | |
scope=output) | |
def main(unused_argv): | |
tf.logging.set_verbosity(tf.logging.INFO) | |
# Set up deployment (i.e., multi-GPUs and/or multi-replicas). | |
config = model_deploy.DeploymentConfig( | |
num_clones=FLAGS.num_clones, | |
clone_on_cpu=FLAGS.clone_on_cpu, | |
replica_id=FLAGS.task, | |
num_replicas=FLAGS.num_replicas, | |
num_ps_tasks=FLAGS.num_ps_tasks) | |
# Split the batch across GPUs. | |
assert FLAGS.train_batch_size % config.num_clones == 0, ( | |
'Training batch size not divisble by number of clones (GPUs).') | |
clone_batch_size = FLAGS.train_batch_size // config.num_clones | |
tf.gfile.MakeDirs(FLAGS.train_logdir) | |
tf.logging.info('Training on %s set', FLAGS.train_split) | |
with tf.Graph().as_default() as graph: | |
with tf.device(config.inputs_device()): | |
dataset = data_generator.Dataset( | |
dataset_name=FLAGS.dataset, | |
split_name=FLAGS.train_split, | |
dataset_dir=FLAGS.dataset_dir, | |
batch_size=clone_batch_size, | |
crop_size=[int(sz) for sz in FLAGS.train_crop_size], | |
min_resize_value=FLAGS.min_resize_value, | |
max_resize_value=FLAGS.max_resize_value, | |
resize_factor=FLAGS.resize_factor, | |
min_scale_factor=FLAGS.min_scale_factor, | |
max_scale_factor=FLAGS.max_scale_factor, | |
scale_factor_step_size=FLAGS.scale_factor_step_size, | |
model_variant=FLAGS.model_variant, | |
num_readers=4, | |
is_training=True, | |
should_shuffle=True, | |
should_repeat=True) | |
# Create the global step on the device storing the variables. | |
with tf.device(config.variables_device()): | |
global_step = tf.train.get_or_create_global_step() | |
# Define the model and create clones. | |
model_fn = _build_deeplab | |
model_args = (dataset.get_one_shot_iterator(), { | |
common.OUTPUT_TYPE: dataset.num_of_classes | |
}, dataset.ignore_label) | |
clones = model_deploy.create_clones(config, model_fn, args=model_args) | |
# Gather update_ops from the first clone. These contain, for example, | |
# the updates for the batch_norm variables created by model_fn. | |
first_clone_scope = config.clone_scope(0) | |
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope) | |
# Gather initial summaries. | |
summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES)) | |
# Add summaries for model variables. | |
for model_var in tf.model_variables(): | |
summaries.add(tf.summary.histogram(model_var.op.name, model_var)) | |
# Add summaries for images, labels, semantic predictions | |
if FLAGS.save_summaries_images: | |
summary_image = graph.get_tensor_by_name( | |
('%s/%s:0' % (first_clone_scope, common.IMAGE)).strip('/')) | |
summaries.add( | |
tf.summary.image('samples/%s' % common.IMAGE, summary_image)) | |
first_clone_label = graph.get_tensor_by_name( | |
('%s/%s:0' % (first_clone_scope, common.LABEL)).strip('/')) | |
# Scale up summary image pixel values for better visualization. | |
pixel_scaling = max(1, 255 // dataset.num_of_classes) | |
summary_label = tf.cast(first_clone_label * pixel_scaling, tf.uint8) | |
summaries.add( | |
tf.summary.image('samples/%s' % common.LABEL, summary_label)) | |
first_clone_output = graph.get_tensor_by_name( | |
('%s/%s:0' % (first_clone_scope, common.OUTPUT_TYPE)).strip('/')) | |
predictions = tf.expand_dims(tf.argmax(first_clone_output, 3), -1) | |
summary_predictions = tf.cast(predictions * pixel_scaling, tf.uint8) | |
summaries.add( | |
tf.summary.image( | |
'samples/%s' % common.OUTPUT_TYPE, summary_predictions)) | |
# Add summaries for losses. | |
for loss in tf.get_collection(tf.GraphKeys.LOSSES, first_clone_scope): | |
summaries.add(tf.summary.scalar('losses/%s' % loss.op.name, loss)) | |
# Build the optimizer based on the device specification. | |
with tf.device(config.optimizer_device()): | |
learning_rate = train_utils.get_model_learning_rate( | |
FLAGS.learning_policy, | |
FLAGS.base_learning_rate, | |
FLAGS.learning_rate_decay_step, | |
FLAGS.learning_rate_decay_factor, | |
FLAGS.training_number_of_steps, | |
FLAGS.learning_power, | |
FLAGS.slow_start_step, | |
FLAGS.slow_start_learning_rate, | |
decay_steps=FLAGS.decay_steps, | |
end_learning_rate=FLAGS.end_learning_rate) | |
summaries.add(tf.summary.scalar('learning_rate', learning_rate)) | |
if FLAGS.optimizer == 'momentum': | |
optimizer = tf.train.MomentumOptimizer(learning_rate, FLAGS.momentum) | |
elif FLAGS.optimizer == 'adam': | |
optimizer = tf.train.AdamOptimizer( | |
learning_rate=FLAGS.adam_learning_rate, epsilon=FLAGS.adam_epsilon) | |
else: | |
raise ValueError('Unknown optimizer') | |
if FLAGS.quantize_delay_step >= 0: | |
if FLAGS.num_clones > 1: | |
raise ValueError('Quantization doesn\'t support multi-clone yet.') | |
contrib_quantize.create_training_graph( | |
quant_delay=FLAGS.quantize_delay_step) | |
startup_delay_steps = FLAGS.task * FLAGS.startup_delay_steps | |
with tf.device(config.variables_device()): | |
total_loss, grads_and_vars = model_deploy.optimize_clones( | |
clones, optimizer) | |
total_loss = tf.check_numerics(total_loss, 'Loss is inf or nan.') | |
summaries.add(tf.summary.scalar('total_loss', total_loss)) | |
# Modify the gradients for biases and last layer variables. | |
last_layers = model.get_extra_layer_scopes( | |
FLAGS.last_layers_contain_logits_only) | |
grad_mult = train_utils.get_model_gradient_multipliers( | |
last_layers, FLAGS.last_layer_gradient_multiplier) | |
if grad_mult: | |
grads_and_vars = slim.learning.multiply_gradients( | |
grads_and_vars, grad_mult) | |
# Create gradient update op. | |
grad_updates = optimizer.apply_gradients( | |
grads_and_vars, global_step=global_step) | |
update_ops.append(grad_updates) | |
update_op = tf.group(*update_ops) | |
with tf.control_dependencies([update_op]): | |
train_tensor = tf.identity(total_loss, name='train_op') | |
# Add the summaries from the first clone. These contain the summaries | |
# created by model_fn and either optimize_clones() or _gather_clone_loss(). | |
summaries |= set( | |
tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone_scope)) | |
# Merge all summaries together. | |
summary_op = tf.summary.merge(list(summaries)) | |
# Soft placement allows placing on CPU ops without GPU implementation. | |
session_config = tf.ConfigProto( | |
allow_soft_placement=True, log_device_placement=False) | |
# Start the training. | |
profile_dir = FLAGS.profile_logdir | |
if profile_dir is not None: | |
tf.gfile.MakeDirs(profile_dir) | |
with contrib_tfprof.ProfileContext( | |
enabled=profile_dir is not None, profile_dir=profile_dir): | |
init_fn = None | |
if FLAGS.tf_initial_checkpoint: | |
init_fn = train_utils.get_model_init_fn( | |
FLAGS.train_logdir, | |
FLAGS.tf_initial_checkpoint, | |
FLAGS.initialize_last_layer, | |
last_layers, | |
ignore_missing_vars=True) | |
slim.learning.train( | |
train_tensor, | |
logdir=FLAGS.train_logdir, | |
log_every_n_steps=FLAGS.log_steps, | |
master=FLAGS.master, | |
number_of_steps=FLAGS.training_number_of_steps, | |
is_chief=(FLAGS.task == 0), | |
session_config=session_config, | |
startup_delay_steps=startup_delay_steps, | |
init_fn=init_fn, | |
summary_op=summary_op, | |
save_summaries_secs=FLAGS.save_summaries_secs, | |
save_interval_secs=FLAGS.save_interval_secs) | |
if __name__ == '__main__': | |
flags.mark_flag_as_required('train_logdir') | |
flags.mark_flag_as_required('dataset_dir') | |
tf.app.run() | |