NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
67.9 kB
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.tflearn.inputs."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import os
import unittest
from absl import logging
from absl.testing import parameterized
import numpy as np
import six
import tensorflow.compat.v1 as tf
from object_detection import inputs
from object_detection.core import preprocessor
from object_detection.core import standard_fields as fields
from object_detection.utils import config_util
from object_detection.utils import test_case
from object_detection.utils import test_utils
from object_detection.utils import tf_version
if six.PY2:
import mock # pylint: disable=g-import-not-at-top
else:
from unittest import mock # pylint: disable=g-import-not-at-top, g-importing-member
FLAGS = tf.flags.FLAGS
def _get_configs_for_model(model_name):
"""Returns configurations for model."""
fname = os.path.join(tf.resource_loader.get_data_files_path(),
'samples/configs/' + model_name + '.config')
label_map_path = os.path.join(tf.resource_loader.get_data_files_path(),
'data/pet_label_map.pbtxt')
data_path = os.path.join(tf.resource_loader.get_data_files_path(),
'test_data/pets_examples.record')
configs = config_util.get_configs_from_pipeline_file(fname)
override_dict = {
'train_input_path': data_path,
'eval_input_path': data_path,
'label_map_path': label_map_path
}
return config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
def _get_configs_for_model_sequence_example(model_name):
"""Returns configurations for model."""
fname = os.path.join(tf.resource_loader.get_data_files_path(),
'test_data/' + model_name + '.config')
label_map_path = os.path.join(tf.resource_loader.get_data_files_path(),
'data/snapshot_serengeti_label_map.pbtxt')
data_path = os.path.join(
tf.resource_loader.get_data_files_path(),
'test_data/snapshot_serengeti_sequence_examples.record')
configs = config_util.get_configs_from_pipeline_file(fname)
override_dict = {
'train_input_path': data_path,
'eval_input_path': data_path,
'label_map_path': label_map_path
}
return config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
def _make_initializable_iterator(dataset):
"""Creates an iterator, and initializes tables.
Args:
dataset: A `tf.data.Dataset` object.
Returns:
A `tf.data.Iterator`.
"""
iterator = tf.data.make_initializable_iterator(dataset)
tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer)
return iterator
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only tests under TF2.X.')
class InputFnTest(test_case.TestCase, parameterized.TestCase):
def test_faster_rcnn_resnet50_train_input(self):
"""Tests the training input function for FasterRcnnResnet50."""
configs = _get_configs_for_model('faster_rcnn_resnet50_pets')
model_config = configs['model']
model_config.faster_rcnn.num_classes = 37
train_input_fn = inputs.create_train_input_fn(
configs['train_config'], configs['train_input_config'], model_config)
features, labels = _make_initializable_iterator(train_input_fn()).get_next()
self.assertAllEqual([1, None, None, 3],
features[fields.InputDataFields.image].shape.as_list())
self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
self.assertAllEqual([1],
features[inputs.HASH_KEY].shape.as_list())
self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
self.assertAllEqual(
[1, 100, 4],
labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
self.assertEqual(tf.float32,
labels[fields.InputDataFields.groundtruth_boxes].dtype)
self.assertAllEqual(
[1, 100, model_config.faster_rcnn.num_classes],
labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
self.assertEqual(tf.float32,
labels[fields.InputDataFields.groundtruth_classes].dtype)
self.assertAllEqual(
[1, 100],
labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
self.assertEqual(tf.float32,
labels[fields.InputDataFields.groundtruth_weights].dtype)
self.assertAllEqual(
[1, 100, model_config.faster_rcnn.num_classes],
labels[fields.InputDataFields.groundtruth_confidences].shape.as_list())
self.assertEqual(
tf.float32,
labels[fields.InputDataFields.groundtruth_confidences].dtype)
def test_faster_rcnn_resnet50_train_input_with_additional_channels(self):
"""Tests the training input function for FasterRcnnResnet50."""
configs = _get_configs_for_model('faster_rcnn_resnet50_pets')
model_config = configs['model']
configs['train_input_config'].num_additional_channels = 2
configs['train_config'].retain_original_images = True
model_config.faster_rcnn.num_classes = 37
train_input_fn = inputs.create_train_input_fn(
configs['train_config'], configs['train_input_config'], model_config)
features, labels = _make_initializable_iterator(train_input_fn()).get_next()
self.assertAllEqual([1, None, None, 5],
features[fields.InputDataFields.image].shape.as_list())
self.assertAllEqual(
[1, None, None, 3],
features[fields.InputDataFields.original_image].shape.as_list())
self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
self.assertAllEqual([1],
features[inputs.HASH_KEY].shape.as_list())
self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
self.assertAllEqual(
[1, 100, 4],
labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
self.assertEqual(tf.float32,
labels[fields.InputDataFields.groundtruth_boxes].dtype)
self.assertAllEqual(
[1, 100, model_config.faster_rcnn.num_classes],
labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
self.assertEqual(tf.float32,
labels[fields.InputDataFields.groundtruth_classes].dtype)
self.assertAllEqual(
[1, 100],
labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
self.assertEqual(tf.float32,
labels[fields.InputDataFields.groundtruth_weights].dtype)
self.assertAllEqual(
[1, 100, model_config.faster_rcnn.num_classes],
labels[fields.InputDataFields.groundtruth_confidences].shape.as_list())
self.assertEqual(
tf.float32,
labels[fields.InputDataFields.groundtruth_confidences].dtype)
@parameterized.parameters(
{'eval_batch_size': 1},
{'eval_batch_size': 8}
)
def test_faster_rcnn_resnet50_eval_input(self, eval_batch_size=1):
"""Tests the eval input function for FasterRcnnResnet50."""
configs = _get_configs_for_model('faster_rcnn_resnet50_pets')
model_config = configs['model']
model_config.faster_rcnn.num_classes = 37
eval_config = configs['eval_config']
eval_config.batch_size = eval_batch_size
eval_input_fn = inputs.create_eval_input_fn(
eval_config, configs['eval_input_configs'][0], model_config)
features, labels = _make_initializable_iterator(eval_input_fn()).get_next()
self.assertAllEqual([eval_batch_size, None, None, 3],
features[fields.InputDataFields.image].shape.as_list())
self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
self.assertAllEqual(
[eval_batch_size, None, None, 3],
features[fields.InputDataFields.original_image].shape.as_list())
self.assertEqual(tf.uint8,
features[fields.InputDataFields.original_image].dtype)
self.assertAllEqual([eval_batch_size],
features[inputs.HASH_KEY].shape.as_list())
self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
self.assertAllEqual(
[eval_batch_size, 100, 4],
labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
self.assertEqual(tf.float32,
labels[fields.InputDataFields.groundtruth_boxes].dtype)
self.assertAllEqual(
[eval_batch_size, 100, model_config.faster_rcnn.num_classes],
labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
self.assertEqual(tf.float32,
labels[fields.InputDataFields.groundtruth_classes].dtype)
self.assertAllEqual(
[eval_batch_size, 100],
labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
self.assertEqual(
tf.float32,
labels[fields.InputDataFields.groundtruth_weights].dtype)
self.assertAllEqual(
[eval_batch_size, 100],
labels[fields.InputDataFields.groundtruth_area].shape.as_list())
self.assertEqual(tf.float32,
labels[fields.InputDataFields.groundtruth_area].dtype)
self.assertAllEqual(
[eval_batch_size, 100],
labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list())
self.assertEqual(
tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype)
self.assertAllEqual(
[eval_batch_size, 100],
labels[fields.InputDataFields.groundtruth_difficult].shape.as_list())
self.assertEqual(
tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype)
def test_context_rcnn_resnet50_train_input_with_sequence_example(
self, train_batch_size=8):
"""Tests the training input function for FasterRcnnResnet50."""
configs = _get_configs_for_model_sequence_example(
'context_rcnn_camera_trap')
model_config = configs['model']
train_config = configs['train_config']
train_config.batch_size = train_batch_size
train_input_fn = inputs.create_train_input_fn(
train_config, configs['train_input_config'], model_config)
features, labels = _make_initializable_iterator(train_input_fn()).get_next()
self.assertAllEqual([train_batch_size, 640, 640, 3],
features[fields.InputDataFields.image].shape.as_list())
self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
self.assertAllEqual([train_batch_size],
features[inputs.HASH_KEY].shape.as_list())
self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
self.assertAllEqual(
[train_batch_size, 100, 4],
labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
self.assertEqual(tf.float32,
labels[fields.InputDataFields.groundtruth_boxes].dtype)
self.assertAllEqual(
[train_batch_size, 100, model_config.faster_rcnn.num_classes],
labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
self.assertEqual(tf.float32,
labels[fields.InputDataFields.groundtruth_classes].dtype)
self.assertAllEqual(
[train_batch_size, 100],
labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
self.assertEqual(tf.float32,
labels[fields.InputDataFields.groundtruth_weights].dtype)
self.assertAllEqual(
[train_batch_size, 100, model_config.faster_rcnn.num_classes],
labels[fields.InputDataFields.groundtruth_confidences].shape.as_list())
self.assertEqual(
tf.float32,
labels[fields.InputDataFields.groundtruth_confidences].dtype)
def test_context_rcnn_resnet50_eval_input_with_sequence_example(
self, eval_batch_size=8):
"""Tests the eval input function for FasterRcnnResnet50."""
configs = _get_configs_for_model_sequence_example(
'context_rcnn_camera_trap')
model_config = configs['model']
eval_config = configs['eval_config']
eval_config.batch_size = eval_batch_size
eval_input_fn = inputs.create_eval_input_fn(
eval_config, configs['eval_input_configs'][0], model_config)
features, labels = _make_initializable_iterator(eval_input_fn()).get_next()
self.assertAllEqual([eval_batch_size, 640, 640, 3],
features[fields.InputDataFields.image].shape.as_list())
self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
self.assertAllEqual(
[eval_batch_size, 640, 640, 3],
features[fields.InputDataFields.original_image].shape.as_list())
self.assertEqual(tf.uint8,
features[fields.InputDataFields.original_image].dtype)
self.assertAllEqual([eval_batch_size],
features[inputs.HASH_KEY].shape.as_list())
self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
self.assertAllEqual(
[eval_batch_size, 100, 4],
labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
self.assertEqual(tf.float32,
labels[fields.InputDataFields.groundtruth_boxes].dtype)
self.assertAllEqual(
[eval_batch_size, 100, model_config.faster_rcnn.num_classes],
labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
self.assertEqual(tf.float32,
labels[fields.InputDataFields.groundtruth_classes].dtype)
self.assertAllEqual(
[eval_batch_size, 100],
labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
self.assertEqual(
tf.float32,
labels[fields.InputDataFields.groundtruth_weights].dtype)
def test_ssd_inceptionV2_train_input(self):
"""Tests the training input function for SSDInceptionV2."""
configs = _get_configs_for_model('ssd_inception_v2_pets')
model_config = configs['model']
model_config.ssd.num_classes = 37
batch_size = configs['train_config'].batch_size
train_input_fn = inputs.create_train_input_fn(
configs['train_config'], configs['train_input_config'], model_config)
features, labels = _make_initializable_iterator(train_input_fn()).get_next()
self.assertAllEqual([batch_size, 300, 300, 3],
features[fields.InputDataFields.image].shape.as_list())
self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
self.assertAllEqual([batch_size],
features[inputs.HASH_KEY].shape.as_list())
self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
self.assertAllEqual(
[batch_size],
labels[fields.InputDataFields.num_groundtruth_boxes].shape.as_list())
self.assertEqual(tf.int32,
labels[fields.InputDataFields.num_groundtruth_boxes].dtype)
self.assertAllEqual(
[batch_size, 100, 4],
labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
self.assertEqual(tf.float32,
labels[fields.InputDataFields.groundtruth_boxes].dtype)
self.assertAllEqual(
[batch_size, 100, model_config.ssd.num_classes],
labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
self.assertEqual(tf.float32,
labels[fields.InputDataFields.groundtruth_classes].dtype)
self.assertAllEqual(
[batch_size, 100],
labels[
fields.InputDataFields.groundtruth_weights].shape.as_list())
self.assertEqual(
tf.float32,
labels[fields.InputDataFields.groundtruth_weights].dtype)
@parameterized.parameters(
{'eval_batch_size': 1},
{'eval_batch_size': 8}
)
def test_ssd_inceptionV2_eval_input(self, eval_batch_size=1):
"""Tests the eval input function for SSDInceptionV2."""
configs = _get_configs_for_model('ssd_inception_v2_pets')
model_config = configs['model']
model_config.ssd.num_classes = 37
eval_config = configs['eval_config']
eval_config.batch_size = eval_batch_size
eval_input_fn = inputs.create_eval_input_fn(
eval_config, configs['eval_input_configs'][0], model_config)
features, labels = _make_initializable_iterator(eval_input_fn()).get_next()
self.assertAllEqual([eval_batch_size, 300, 300, 3],
features[fields.InputDataFields.image].shape.as_list())
self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
self.assertAllEqual(
[eval_batch_size, 300, 300, 3],
features[fields.InputDataFields.original_image].shape.as_list())
self.assertEqual(tf.uint8,
features[fields.InputDataFields.original_image].dtype)
self.assertAllEqual([eval_batch_size],
features[inputs.HASH_KEY].shape.as_list())
self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
self.assertAllEqual(
[eval_batch_size, 100, 4],
labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
self.assertEqual(tf.float32,
labels[fields.InputDataFields.groundtruth_boxes].dtype)
self.assertAllEqual(
[eval_batch_size, 100, model_config.ssd.num_classes],
labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
self.assertEqual(tf.float32,
labels[fields.InputDataFields.groundtruth_classes].dtype)
self.assertAllEqual(
[eval_batch_size, 100],
labels[
fields.InputDataFields.groundtruth_weights].shape.as_list())
self.assertEqual(
tf.float32,
labels[fields.InputDataFields.groundtruth_weights].dtype)
self.assertAllEqual(
[eval_batch_size, 100],
labels[fields.InputDataFields.groundtruth_area].shape.as_list())
self.assertEqual(tf.float32,
labels[fields.InputDataFields.groundtruth_area].dtype)
self.assertAllEqual(
[eval_batch_size, 100],
labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list())
self.assertEqual(
tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype)
self.assertAllEqual(
[eval_batch_size, 100],
labels[fields.InputDataFields.groundtruth_difficult].shape.as_list())
self.assertEqual(
tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype)
def test_ssd_inceptionV2_eval_input_with_additional_channels(
self, eval_batch_size=1):
"""Tests the eval input function for SSDInceptionV2 with additional channel.
Args:
eval_batch_size: Batch size for eval set.
"""
configs = _get_configs_for_model('ssd_inception_v2_pets')
model_config = configs['model']
model_config.ssd.num_classes = 37
configs['eval_input_configs'][0].num_additional_channels = 1
eval_config = configs['eval_config']
eval_config.batch_size = eval_batch_size
eval_config.retain_original_image_additional_channels = True
eval_input_fn = inputs.create_eval_input_fn(
eval_config, configs['eval_input_configs'][0], model_config)
features, labels = _make_initializable_iterator(eval_input_fn()).get_next()
self.assertAllEqual([eval_batch_size, 300, 300, 4],
features[fields.InputDataFields.image].shape.as_list())
self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
self.assertAllEqual(
[eval_batch_size, 300, 300, 3],
features[fields.InputDataFields.original_image].shape.as_list())
self.assertEqual(tf.uint8,
features[fields.InputDataFields.original_image].dtype)
self.assertAllEqual([eval_batch_size, 300, 300, 1], features[
fields.InputDataFields.image_additional_channels].shape.as_list())
self.assertEqual(
tf.uint8,
features[fields.InputDataFields.image_additional_channels].dtype)
self.assertAllEqual([eval_batch_size],
features[inputs.HASH_KEY].shape.as_list())
self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
self.assertAllEqual(
[eval_batch_size, 100, 4],
labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
self.assertEqual(tf.float32,
labels[fields.InputDataFields.groundtruth_boxes].dtype)
self.assertAllEqual(
[eval_batch_size, 100, model_config.ssd.num_classes],
labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
self.assertEqual(tf.float32,
labels[fields.InputDataFields.groundtruth_classes].dtype)
self.assertAllEqual(
[eval_batch_size, 100],
labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
self.assertEqual(tf.float32,
labels[fields.InputDataFields.groundtruth_weights].dtype)
self.assertAllEqual(
[eval_batch_size, 100],
labels[fields.InputDataFields.groundtruth_area].shape.as_list())
self.assertEqual(tf.float32,
labels[fields.InputDataFields.groundtruth_area].dtype)
self.assertAllEqual(
[eval_batch_size, 100],
labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list())
self.assertEqual(tf.bool,
labels[fields.InputDataFields.groundtruth_is_crowd].dtype)
self.assertAllEqual(
[eval_batch_size, 100],
labels[fields.InputDataFields.groundtruth_difficult].shape.as_list())
self.assertEqual(tf.int32,
labels[fields.InputDataFields.groundtruth_difficult].dtype)
def test_predict_input(self):
"""Tests the predict input function."""
configs = _get_configs_for_model('ssd_inception_v2_pets')
predict_input_fn = inputs.create_predict_input_fn(
model_config=configs['model'],
predict_input_config=configs['eval_input_configs'][0])
serving_input_receiver = predict_input_fn()
image = serving_input_receiver.features[fields.InputDataFields.image]
receiver_tensors = serving_input_receiver.receiver_tensors[
inputs.SERVING_FED_EXAMPLE_KEY]
self.assertEqual([1, 300, 300, 3], image.shape.as_list())
self.assertEqual(tf.float32, image.dtype)
self.assertEqual(tf.string, receiver_tensors.dtype)
def test_predict_input_with_additional_channels(self):
"""Tests the predict input function with additional channels."""
configs = _get_configs_for_model('ssd_inception_v2_pets')
configs['eval_input_configs'][0].num_additional_channels = 2
predict_input_fn = inputs.create_predict_input_fn(
model_config=configs['model'],
predict_input_config=configs['eval_input_configs'][0])
serving_input_receiver = predict_input_fn()
image = serving_input_receiver.features[fields.InputDataFields.image]
receiver_tensors = serving_input_receiver.receiver_tensors[
inputs.SERVING_FED_EXAMPLE_KEY]
# RGB + 2 additional channels = 5 channels.
self.assertEqual([1, 300, 300, 5], image.shape.as_list())
self.assertEqual(tf.float32, image.dtype)
self.assertEqual(tf.string, receiver_tensors.dtype)
def test_error_with_bad_train_config(self):
"""Tests that a TypeError is raised with improper train config."""
configs = _get_configs_for_model('ssd_inception_v2_pets')
configs['model'].ssd.num_classes = 37
train_input_fn = inputs.create_train_input_fn(
train_config=configs['eval_config'], # Expecting `TrainConfig`.
train_input_config=configs['train_input_config'],
model_config=configs['model'])
with self.assertRaises(TypeError):
train_input_fn()
def test_error_with_bad_train_input_config(self):
"""Tests that a TypeError is raised with improper train input config."""
configs = _get_configs_for_model('ssd_inception_v2_pets')
configs['model'].ssd.num_classes = 37
train_input_fn = inputs.create_train_input_fn(
train_config=configs['train_config'],
train_input_config=configs['model'], # Expecting `InputReader`.
model_config=configs['model'])
with self.assertRaises(TypeError):
train_input_fn()
def test_error_with_bad_train_model_config(self):
"""Tests that a TypeError is raised with improper train model config."""
configs = _get_configs_for_model('ssd_inception_v2_pets')
configs['model'].ssd.num_classes = 37
train_input_fn = inputs.create_train_input_fn(
train_config=configs['train_config'],
train_input_config=configs['train_input_config'],
model_config=configs['train_config']) # Expecting `DetectionModel`.
with self.assertRaises(TypeError):
train_input_fn()
def test_error_with_bad_eval_config(self):
"""Tests that a TypeError is raised with improper eval config."""
configs = _get_configs_for_model('ssd_inception_v2_pets')
configs['model'].ssd.num_classes = 37
eval_input_fn = inputs.create_eval_input_fn(
eval_config=configs['train_config'], # Expecting `EvalConfig`.
eval_input_config=configs['eval_input_configs'][0],
model_config=configs['model'])
with self.assertRaises(TypeError):
eval_input_fn()
def test_error_with_bad_eval_input_config(self):
"""Tests that a TypeError is raised with improper eval input config."""
configs = _get_configs_for_model('ssd_inception_v2_pets')
configs['model'].ssd.num_classes = 37
eval_input_fn = inputs.create_eval_input_fn(
eval_config=configs['eval_config'],
eval_input_config=configs['model'], # Expecting `InputReader`.
model_config=configs['model'])
with self.assertRaises(TypeError):
eval_input_fn()
def test_error_with_bad_eval_model_config(self):
"""Tests that a TypeError is raised with improper eval model config."""
configs = _get_configs_for_model('ssd_inception_v2_pets')
configs['model'].ssd.num_classes = 37
eval_input_fn = inputs.create_eval_input_fn(
eval_config=configs['eval_config'],
eval_input_config=configs['eval_input_configs'][0],
model_config=configs['eval_config']) # Expecting `DetectionModel`.
with self.assertRaises(TypeError):
eval_input_fn()
def test_output_equal_in_replace_empty_string_with_random_number(self):
string_placeholder = tf.placeholder(tf.string, shape=[])
replaced_string = inputs._replace_empty_string_with_random_number(
string_placeholder)
test_string = b'hello world'
feed_dict = {string_placeholder: test_string}
with self.test_session() as sess:
out_string = sess.run(replaced_string, feed_dict=feed_dict)
self.assertEqual(test_string, out_string)
def test_output_is_integer_in_replace_empty_string_with_random_number(self):
string_placeholder = tf.placeholder(tf.string, shape=[])
replaced_string = inputs._replace_empty_string_with_random_number(
string_placeholder)
empty_string = ''
feed_dict = {string_placeholder: empty_string}
with self.test_session() as sess:
out_string = sess.run(replaced_string, feed_dict=feed_dict)
is_integer = True
try:
# Test whether out_string is a string which represents an integer, the
# casting below will throw an error if out_string is not castable to int.
int(out_string)
except ValueError:
is_integer = False
self.assertTrue(is_integer)
def test_force_no_resize(self):
"""Tests the functionality of force_no_reisze option."""
configs = _get_configs_for_model('ssd_inception_v2_pets')
configs['eval_config'].force_no_resize = True
eval_input_fn = inputs.create_eval_input_fn(
eval_config=configs['eval_config'],
eval_input_config=configs['eval_input_configs'][0],
model_config=configs['model']
)
train_input_fn = inputs.create_train_input_fn(
train_config=configs['train_config'],
train_input_config=configs['train_input_config'],
model_config=configs['model']
)
features_train, _ = _make_initializable_iterator(
train_input_fn()).get_next()
features_eval, _ = _make_initializable_iterator(
eval_input_fn()).get_next()
images_train, images_eval = features_train['image'], features_eval['image']
self.assertEqual([1, None, None, 3], images_eval.shape.as_list())
self.assertEqual([24, 300, 300, 3], images_train.shape.as_list())
class DataAugmentationFnTest(test_case.TestCase):
def test_apply_image_and_box_augmentation(self):
data_augmentation_options = [
(preprocessor.resize_image, {
'new_height': 20,
'new_width': 20,
'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
}),
(preprocessor.scale_boxes_to_pixel_coordinates, {}),
]
data_augmentation_fn = functools.partial(
inputs.augment_input_data,
data_augmentation_options=data_augmentation_options)
def graph_fn():
tensor_dict = {
fields.InputDataFields.image:
tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
fields.InputDataFields.groundtruth_boxes:
tf.constant(np.array([[.5, .5, 1., 1.]], np.float32))
}
augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
return (augmented_tensor_dict[fields.InputDataFields.image],
augmented_tensor_dict[fields.InputDataFields.
groundtruth_boxes])
image, groundtruth_boxes = self.execute_cpu(graph_fn, [])
self.assertAllEqual(image.shape, [20, 20, 3])
self.assertAllClose(groundtruth_boxes, [[10, 10, 20, 20]])
def test_apply_image_and_box_augmentation_with_scores(self):
data_augmentation_options = [
(preprocessor.resize_image, {
'new_height': 20,
'new_width': 20,
'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
}),
(preprocessor.scale_boxes_to_pixel_coordinates, {}),
]
data_augmentation_fn = functools.partial(
inputs.augment_input_data,
data_augmentation_options=data_augmentation_options)
def graph_fn():
tensor_dict = {
fields.InputDataFields.image:
tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
fields.InputDataFields.groundtruth_boxes:
tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)),
fields.InputDataFields.groundtruth_classes:
tf.constant(np.array([1.0], np.float32)),
fields.InputDataFields.groundtruth_weights:
tf.constant(np.array([0.8], np.float32)),
}
augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
return (augmented_tensor_dict[fields.InputDataFields.image],
augmented_tensor_dict[fields.InputDataFields.groundtruth_boxes],
augmented_tensor_dict[fields.InputDataFields.groundtruth_classes],
augmented_tensor_dict[fields.InputDataFields.groundtruth_weights])
(image, groundtruth_boxes,
groundtruth_classes, groundtruth_weights) = self.execute_cpu(graph_fn, [])
self.assertAllEqual(image.shape, [20, 20, 3])
self.assertAllClose(groundtruth_boxes, [[10, 10, 20, 20]])
self.assertAllClose(groundtruth_classes.shape, [1.0])
self.assertAllClose(groundtruth_weights, [0.8])
def test_include_masks_in_data_augmentation(self):
data_augmentation_options = [
(preprocessor.resize_image, {
'new_height': 20,
'new_width': 20,
'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
})
]
data_augmentation_fn = functools.partial(
inputs.augment_input_data,
data_augmentation_options=data_augmentation_options)
def graph_fn():
tensor_dict = {
fields.InputDataFields.image:
tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
fields.InputDataFields.groundtruth_instance_masks:
tf.constant(np.zeros([2, 10, 10], np.uint8))
}
augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
return (augmented_tensor_dict[fields.InputDataFields.image],
augmented_tensor_dict[fields.InputDataFields.
groundtruth_instance_masks])
image, masks = self.execute_cpu(graph_fn, [])
self.assertAllEqual(image.shape, [20, 20, 3])
self.assertAllEqual(masks.shape, [2, 20, 20])
def test_include_keypoints_in_data_augmentation(self):
data_augmentation_options = [
(preprocessor.resize_image, {
'new_height': 20,
'new_width': 20,
'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
}),
(preprocessor.scale_boxes_to_pixel_coordinates, {}),
]
data_augmentation_fn = functools.partial(
inputs.augment_input_data,
data_augmentation_options=data_augmentation_options)
def graph_fn():
tensor_dict = {
fields.InputDataFields.image:
tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
fields.InputDataFields.groundtruth_boxes:
tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)),
fields.InputDataFields.groundtruth_keypoints:
tf.constant(np.array([[[0.5, 1.0], [0.5, 0.5]]], np.float32))
}
augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
return (augmented_tensor_dict[fields.InputDataFields.image],
augmented_tensor_dict[fields.InputDataFields.groundtruth_boxes],
augmented_tensor_dict[fields.InputDataFields.
groundtruth_keypoints])
image, boxes, keypoints = self.execute_cpu(graph_fn, [])
self.assertAllEqual(image.shape, [20, 20, 3])
self.assertAllClose(boxes, [[10, 10, 20, 20]])
self.assertAllClose(keypoints, [[[10, 20], [10, 10]]])
def _fake_model_preprocessor_fn(image):
return (image, tf.expand_dims(tf.shape(image)[1:], axis=0))
def _fake_image_resizer_fn(image, mask):
return (image, mask, tf.shape(image))
def _fake_resize50_preprocess_fn(image):
image = image[0]
image, shape = preprocessor.resize_to_range(
image, min_dimension=50, max_dimension=50, pad_to_max_dimension=True)
return tf.expand_dims(image, 0), tf.expand_dims(shape, axis=0)
class DataTransformationFnTest(test_case.TestCase, parameterized.TestCase):
def test_combine_additional_channels_if_present(self):
image = np.random.rand(4, 4, 3).astype(np.float32)
additional_channels = np.random.rand(4, 4, 2).astype(np.float32)
def graph_fn(image, additional_channels):
tensor_dict = {
fields.InputDataFields.image: image,
fields.InputDataFields.image_additional_channels: additional_channels,
fields.InputDataFields.groundtruth_classes:
tf.constant([1, 1], tf.int32)
}
input_transformation_fn = functools.partial(
inputs.transform_input_data,
model_preprocess_fn=_fake_model_preprocessor_fn,
image_resizer_fn=_fake_image_resizer_fn,
num_classes=1)
out_tensors = input_transformation_fn(tensor_dict=tensor_dict)
return out_tensors[fields.InputDataFields.image]
out_image = self.execute_cpu(graph_fn, [image, additional_channels])
self.assertAllEqual(out_image.dtype, tf.float32)
self.assertAllEqual(out_image.shape, [4, 4, 5])
self.assertAllClose(out_image, np.concatenate((image, additional_channels),
axis=2))
def test_use_multiclass_scores_when_present(self):
def graph_fn():
tensor_dict = {
fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3).
astype(np.float32)),
fields.InputDataFields.groundtruth_boxes:
tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]],
np.float32)),
fields.InputDataFields.multiclass_scores:
tf.constant(np.array([0.2, 0.3, 0.5, 0.1, 0.6, 0.3], np.float32)),
fields.InputDataFields.groundtruth_classes:
tf.constant(np.array([1, 2], np.int32))
}
input_transformation_fn = functools.partial(
inputs.transform_input_data,
model_preprocess_fn=_fake_model_preprocessor_fn,
image_resizer_fn=_fake_image_resizer_fn,
num_classes=3, use_multiclass_scores=True)
transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict)
return transformed_inputs[fields.InputDataFields.groundtruth_classes]
groundtruth_classes = self.execute_cpu(graph_fn, [])
self.assertAllClose(
np.array([[0.2, 0.3, 0.5], [0.1, 0.6, 0.3]], np.float32),
groundtruth_classes)
@unittest.skipIf(tf_version.is_tf2(), ('Skipping due to different behaviour '
'in TF 2.X'))
def test_use_multiclass_scores_when_not_present(self):
def graph_fn():
zero_num_elements = tf.random.uniform([], minval=0, maxval=1,
dtype=tf.int32)
tensor_dict = {
fields.InputDataFields.image:
tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
fields.InputDataFields.groundtruth_boxes:
tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]],
np.float32)),
fields.InputDataFields.multiclass_scores: tf.zeros(zero_num_elements),
fields.InputDataFields.groundtruth_classes:
tf.constant(np.array([1, 2], np.int32))
}
input_transformation_fn = functools.partial(
inputs.transform_input_data,
model_preprocess_fn=_fake_model_preprocessor_fn,
image_resizer_fn=_fake_image_resizer_fn,
num_classes=3, use_multiclass_scores=True)
transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict)
return transformed_inputs[fields.InputDataFields.groundtruth_classes]
groundtruth_classes = self.execute_cpu(graph_fn, [])
self.assertAllClose(
np.array([[0, 1, 0], [0, 0, 1]], np.float32),
groundtruth_classes)
@parameterized.parameters(
{'labeled_classes': [1, 2]},
{'labeled_classes': []},
{'labeled_classes': [1, -1, 2]} # -1 denotes an unrecognized class
)
def test_use_labeled_classes(self, labeled_classes):
def compute_fn(image, groundtruth_boxes, groundtruth_classes,
groundtruth_labeled_classes):
tensor_dict = {
fields.InputDataFields.image:
image,
fields.InputDataFields.groundtruth_boxes:
groundtruth_boxes,
fields.InputDataFields.groundtruth_classes:
groundtruth_classes,
fields.InputDataFields.groundtruth_labeled_classes:
groundtruth_labeled_classes
}
input_transformation_fn = functools.partial(
inputs.transform_input_data,
model_preprocess_fn=_fake_model_preprocessor_fn,
image_resizer_fn=_fake_image_resizer_fn,
num_classes=3)
return input_transformation_fn(tensor_dict=tensor_dict)
image = np.random.rand(4, 4, 3).astype(np.float32)
groundtruth_boxes = np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)
groundtruth_classes = np.array([1, 2], np.int32)
groundtruth_labeled_classes = np.array(labeled_classes, np.int32)
transformed_inputs = self.execute_cpu(compute_fn, [
image, groundtruth_boxes, groundtruth_classes,
groundtruth_labeled_classes
])
if labeled_classes == [1, 2] or labeled_classes == [1, -1, 2]:
transformed_labeled_classes = [1, 1, 0]
elif not labeled_classes:
transformed_labeled_classes = [1, 1, 1]
else:
logging.exception('Unexpected labeled_classes %r', labeled_classes)
self.assertAllEqual(
np.array(transformed_labeled_classes, np.float32),
transformed_inputs[fields.InputDataFields.groundtruth_labeled_classes])
def test_returns_correct_class_label_encodings(self):
def graph_fn():
tensor_dict = {
fields.InputDataFields.image:
tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
fields.InputDataFields.groundtruth_boxes:
tf.constant(np.array([[0, 0, 1, 1], [.5, .5, 1, 1]], np.float32)),
fields.InputDataFields.groundtruth_classes:
tf.constant(np.array([3, 1], np.int32))
}
num_classes = 3
input_transformation_fn = functools.partial(
inputs.transform_input_data,
model_preprocess_fn=_fake_model_preprocessor_fn,
image_resizer_fn=_fake_image_resizer_fn,
num_classes=num_classes)
transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict)
return (transformed_inputs[fields.InputDataFields.groundtruth_classes],
transformed_inputs[fields.InputDataFields.
groundtruth_confidences])
(groundtruth_classes, groundtruth_confidences) = self.execute_cpu(graph_fn,
[])
self.assertAllClose(groundtruth_classes, [[0, 0, 1], [1, 0, 0]])
self.assertAllClose(groundtruth_confidences, [[0, 0, 1], [1, 0, 0]])
def test_returns_correct_labels_with_unrecognized_class(self):
def graph_fn():
tensor_dict = {
fields.InputDataFields.image:
tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
fields.InputDataFields.groundtruth_boxes:
tf.constant(
np.array([[0, 0, 1, 1], [.2, .2, 4, 4], [.5, .5, 1, 1]],
np.float32)),
fields.InputDataFields.groundtruth_area:
tf.constant(np.array([.5, .4, .3])),
fields.InputDataFields.groundtruth_classes:
tf.constant(np.array([3, -1, 1], np.int32)),
fields.InputDataFields.groundtruth_keypoints:
tf.constant(
np.array([[[.1, .1]], [[.2, .2]], [[.5, .5]]],
np.float32)),
fields.InputDataFields.groundtruth_keypoint_visibilities:
tf.constant([[True, True], [False, False], [True, True]]),
fields.InputDataFields.groundtruth_instance_masks:
tf.constant(np.random.rand(3, 4, 4).astype(np.float32)),
fields.InputDataFields.groundtruth_is_crowd:
tf.constant([False, True, False]),
fields.InputDataFields.groundtruth_difficult:
tf.constant(np.array([0, 0, 1], np.int32))
}
num_classes = 3
input_transformation_fn = functools.partial(
inputs.transform_input_data,
model_preprocess_fn=_fake_model_preprocessor_fn,
image_resizer_fn=_fake_image_resizer_fn,
num_classes=num_classes)
transformed_inputs = input_transformation_fn(tensor_dict)
return (transformed_inputs[fields.InputDataFields.groundtruth_classes],
transformed_inputs[fields.InputDataFields.num_groundtruth_boxes],
transformed_inputs[fields.InputDataFields.groundtruth_area],
transformed_inputs[fields.InputDataFields.
groundtruth_confidences],
transformed_inputs[fields.InputDataFields.groundtruth_boxes],
transformed_inputs[fields.InputDataFields.groundtruth_keypoints],
transformed_inputs[fields.InputDataFields.
groundtruth_keypoint_visibilities],
transformed_inputs[fields.InputDataFields.
groundtruth_instance_masks],
transformed_inputs[fields.InputDataFields.groundtruth_is_crowd],
transformed_inputs[fields.InputDataFields.groundtruth_difficult])
(groundtruth_classes, num_groundtruth_boxes, groundtruth_area,
groundtruth_confidences, groundtruth_boxes, groundtruth_keypoints,
groundtruth_keypoint_visibilities, groundtruth_instance_masks,
groundtruth_is_crowd, groundtruth_difficult) = self.execute_cpu(graph_fn,
[])
self.assertAllClose(groundtruth_classes, [[0, 0, 1], [1, 0, 0]])
self.assertAllEqual(num_groundtruth_boxes, 2)
self.assertAllClose(groundtruth_area, [.5, .3])
self.assertAllEqual(groundtruth_confidences, [[0, 0, 1], [1, 0, 0]])
self.assertAllClose(groundtruth_boxes, [[0, 0, 1, 1], [.5, .5, 1, 1]])
self.assertAllClose(groundtruth_keypoints, [[[.1, .1]], [[.5, .5]]])
self.assertAllEqual(groundtruth_keypoint_visibilities,
[[True, True], [True, True]])
self.assertAllEqual(groundtruth_instance_masks.shape, [2, 4, 4])
self.assertAllEqual(groundtruth_is_crowd, [False, False])
self.assertAllEqual(groundtruth_difficult, [0, 1])
def test_returns_correct_merged_boxes(self):
def graph_fn():
tensor_dict = {
fields.InputDataFields.image:
tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
fields.InputDataFields.groundtruth_boxes:
tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]],
np.float32)),
fields.InputDataFields.groundtruth_classes:
tf.constant(np.array([3, 1], np.int32))
}
num_classes = 3
input_transformation_fn = functools.partial(
inputs.transform_input_data,
model_preprocess_fn=_fake_model_preprocessor_fn,
image_resizer_fn=_fake_image_resizer_fn,
num_classes=num_classes,
merge_multiple_boxes=True)
transformed_inputs = input_transformation_fn(tensor_dict)
return (transformed_inputs[fields.InputDataFields.groundtruth_boxes],
transformed_inputs[fields.InputDataFields.groundtruth_classes],
transformed_inputs[fields.InputDataFields.
groundtruth_confidences],
transformed_inputs[fields.InputDataFields.num_groundtruth_boxes])
(groundtruth_boxes, groundtruth_classes, groundtruth_confidences,
num_groundtruth_boxes) = self.execute_cpu(graph_fn, [])
self.assertAllClose(
groundtruth_boxes,
[[.5, .5, 1., 1.]])
self.assertAllClose(
groundtruth_classes,
[[1, 0, 1]])
self.assertAllClose(
groundtruth_confidences,
[[1, 0, 1]])
self.assertAllClose(
num_groundtruth_boxes,
1)
def test_returns_correct_groundtruth_confidences_when_input_present(self):
def graph_fn():
tensor_dict = {
fields.InputDataFields.image:
tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
fields.InputDataFields.groundtruth_boxes:
tf.constant(np.array([[0, 0, 1, 1], [.5, .5, 1, 1]], np.float32)),
fields.InputDataFields.groundtruth_classes:
tf.constant(np.array([3, 1], np.int32)),
fields.InputDataFields.groundtruth_confidences:
tf.constant(np.array([1.0, -1.0], np.float32))
}
num_classes = 3
input_transformation_fn = functools.partial(
inputs.transform_input_data,
model_preprocess_fn=_fake_model_preprocessor_fn,
image_resizer_fn=_fake_image_resizer_fn,
num_classes=num_classes)
transformed_inputs = input_transformation_fn(tensor_dict)
return (transformed_inputs[fields.InputDataFields.groundtruth_classes],
transformed_inputs[fields.InputDataFields.
groundtruth_confidences])
groundtruth_classes, groundtruth_confidences = self.execute_cpu(graph_fn,
[])
self.assertAllClose(
groundtruth_classes,
[[0, 0, 1], [1, 0, 0]])
self.assertAllClose(
groundtruth_confidences,
[[0, 0, 1], [-1, 0, 0]])
def test_returns_resized_masks(self):
def graph_fn():
tensor_dict = {
fields.InputDataFields.image:
tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
fields.InputDataFields.groundtruth_instance_masks:
tf.constant(np.random.rand(2, 4, 4).astype(np.float32)),
fields.InputDataFields.groundtruth_classes:
tf.constant(np.array([3, 1], np.int32)),
fields.InputDataFields.original_image_spatial_shape:
tf.constant(np.array([4, 4], np.int32))
}
def fake_image_resizer_fn(image, masks=None):
resized_image = tf.image.resize_images(image, [8, 8])
results = [resized_image]
if masks is not None:
resized_masks = tf.transpose(
tf.image.resize_images(tf.transpose(masks, [1, 2, 0]), [8, 8]),
[2, 0, 1])
results.append(resized_masks)
results.append(tf.shape(resized_image))
return results
num_classes = 3
input_transformation_fn = functools.partial(
inputs.transform_input_data,
model_preprocess_fn=_fake_model_preprocessor_fn,
image_resizer_fn=fake_image_resizer_fn,
num_classes=num_classes,
retain_original_image=True)
transformed_inputs = input_transformation_fn(tensor_dict)
return (transformed_inputs[fields.InputDataFields.original_image],
transformed_inputs[fields.InputDataFields.
original_image_spatial_shape],
transformed_inputs[fields.InputDataFields.
groundtruth_instance_masks])
(original_image, original_image_shape,
groundtruth_instance_masks) = self.execute_cpu(graph_fn, [])
self.assertEqual(original_image.dtype, np.uint8)
self.assertAllEqual(original_image_shape, [4, 4])
self.assertAllEqual(original_image.shape, [8, 8, 3])
self.assertAllEqual(groundtruth_instance_masks.shape, [2, 8, 8])
def test_applies_model_preprocess_fn_to_image_tensor(self):
np_image = np.random.randint(256, size=(4, 4, 3))
def graph_fn(image):
tensor_dict = {
fields.InputDataFields.image: image,
fields.InputDataFields.groundtruth_classes:
tf.constant(np.array([3, 1], np.int32))
}
def fake_model_preprocessor_fn(image):
return (image / 255., tf.expand_dims(tf.shape(image)[1:], axis=0))
num_classes = 3
input_transformation_fn = functools.partial(
inputs.transform_input_data,
model_preprocess_fn=fake_model_preprocessor_fn,
image_resizer_fn=_fake_image_resizer_fn,
num_classes=num_classes)
transformed_inputs = input_transformation_fn(tensor_dict)
return (transformed_inputs[fields.InputDataFields.image],
transformed_inputs[fields.InputDataFields.true_image_shape])
image, true_image_shape = self.execute_cpu(graph_fn, [np_image])
self.assertAllClose(image, np_image / 255.)
self.assertAllClose(true_image_shape, [4, 4, 3])
def test_applies_data_augmentation_fn_to_tensor_dict(self):
np_image = np.random.randint(256, size=(4, 4, 3))
def graph_fn(image):
tensor_dict = {
fields.InputDataFields.image: image,
fields.InputDataFields.groundtruth_classes:
tf.constant(np.array([3, 1], np.int32))
}
def add_one_data_augmentation_fn(tensor_dict):
return {key: value + 1 for key, value in tensor_dict.items()}
num_classes = 4
input_transformation_fn = functools.partial(
inputs.transform_input_data,
model_preprocess_fn=_fake_model_preprocessor_fn,
image_resizer_fn=_fake_image_resizer_fn,
num_classes=num_classes,
data_augmentation_fn=add_one_data_augmentation_fn)
transformed_inputs = input_transformation_fn(tensor_dict)
return (transformed_inputs[fields.InputDataFields.image],
transformed_inputs[fields.InputDataFields.groundtruth_classes])
image, groundtruth_classes = self.execute_cpu(graph_fn, [np_image])
self.assertAllEqual(image, np_image + 1)
self.assertAllEqual(
groundtruth_classes,
[[0, 0, 0, 1], [0, 1, 0, 0]])
def test_applies_data_augmentation_fn_before_model_preprocess_fn(self):
np_image = np.random.randint(256, size=(4, 4, 3))
def graph_fn(image):
tensor_dict = {
fields.InputDataFields.image: image,
fields.InputDataFields.groundtruth_classes:
tf.constant(np.array([3, 1], np.int32))
}
def mul_two_model_preprocessor_fn(image):
return (image * 2, tf.expand_dims(tf.shape(image)[1:], axis=0))
def add_five_to_image_data_augmentation_fn(tensor_dict):
tensor_dict[fields.InputDataFields.image] += 5
return tensor_dict
num_classes = 4
input_transformation_fn = functools.partial(
inputs.transform_input_data,
model_preprocess_fn=mul_two_model_preprocessor_fn,
image_resizer_fn=_fake_image_resizer_fn,
num_classes=num_classes,
data_augmentation_fn=add_five_to_image_data_augmentation_fn)
transformed_inputs = input_transformation_fn(tensor_dict)
return transformed_inputs[fields.InputDataFields.image]
image = self.execute_cpu(graph_fn, [np_image])
self.assertAllEqual(image, (np_image + 5) * 2)
def test_resize_with_padding(self):
def graph_fn():
tensor_dict = {
fields.InputDataFields.image:
tf.constant(np.random.rand(100, 50, 3).astype(np.float32)),
fields.InputDataFields.groundtruth_boxes:
tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]],
np.float32)),
fields.InputDataFields.groundtruth_classes:
tf.constant(np.array([1, 2], np.int32)),
fields.InputDataFields.groundtruth_keypoints:
tf.constant([[[0.1, 0.2]], [[0.3, 0.4]]]),
}
num_classes = 3
input_transformation_fn = functools.partial(
inputs.transform_input_data,
model_preprocess_fn=_fake_resize50_preprocess_fn,
image_resizer_fn=_fake_image_resizer_fn,
num_classes=num_classes,)
transformed_inputs = input_transformation_fn(tensor_dict)
return (transformed_inputs[fields.InputDataFields.groundtruth_boxes],
transformed_inputs[fields.InputDataFields.groundtruth_keypoints])
groundtruth_boxes, groundtruth_keypoints = self.execute_cpu(graph_fn, [])
self.assertAllClose(
groundtruth_boxes,
[[.5, .25, 1., .5], [.0, .0, .5, .25]])
self.assertAllClose(
groundtruth_keypoints,
[[[.1, .1]], [[.3, .2]]])
def test_groundtruth_keypoint_weights(self):
def graph_fn():
tensor_dict = {
fields.InputDataFields.image:
tf.constant(np.random.rand(100, 50, 3).astype(np.float32)),
fields.InputDataFields.groundtruth_boxes:
tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]],
np.float32)),
fields.InputDataFields.groundtruth_classes:
tf.constant(np.array([1, 2], np.int32)),
fields.InputDataFields.groundtruth_keypoints:
tf.constant([[[0.1, 0.2], [0.3, 0.4]],
[[0.5, 0.6], [0.7, 0.8]]]),
fields.InputDataFields.groundtruth_keypoint_visibilities:
tf.constant([[True, False], [True, True]]),
}
num_classes = 3
keypoint_type_weight = [1.0, 2.0]
input_transformation_fn = functools.partial(
inputs.transform_input_data,
model_preprocess_fn=_fake_resize50_preprocess_fn,
image_resizer_fn=_fake_image_resizer_fn,
num_classes=num_classes,
keypoint_type_weight=keypoint_type_weight)
transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict)
return (transformed_inputs[fields.InputDataFields.groundtruth_keypoints],
transformed_inputs[fields.InputDataFields.
groundtruth_keypoint_weights])
groundtruth_keypoints, groundtruth_keypoint_weights = self.execute_cpu(
graph_fn, [])
self.assertAllClose(
groundtruth_keypoints,
[[[0.1, 0.1], [0.3, 0.2]],
[[0.5, 0.3], [0.7, 0.4]]])
self.assertAllClose(
groundtruth_keypoint_weights,
[[1.0, 0.0], [1.0, 2.0]])
def test_groundtruth_keypoint_weights_default(self):
def graph_fn():
tensor_dict = {
fields.InputDataFields.image:
tf.constant(np.random.rand(100, 50, 3).astype(np.float32)),
fields.InputDataFields.groundtruth_boxes:
tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]],
np.float32)),
fields.InputDataFields.groundtruth_classes:
tf.constant(np.array([1, 2], np.int32)),
fields.InputDataFields.groundtruth_keypoints:
tf.constant([[[0.1, 0.2], [0.3, 0.4]],
[[0.5, 0.6], [0.7, 0.8]]]),
}
num_classes = 3
input_transformation_fn = functools.partial(
inputs.transform_input_data,
model_preprocess_fn=_fake_resize50_preprocess_fn,
image_resizer_fn=_fake_image_resizer_fn,
num_classes=num_classes)
transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict)
return (transformed_inputs[fields.InputDataFields.groundtruth_keypoints],
transformed_inputs[fields.InputDataFields.
groundtruth_keypoint_weights])
groundtruth_keypoints, groundtruth_keypoint_weights = self.execute_cpu(
graph_fn, [])
self.assertAllClose(
groundtruth_keypoints,
[[[0.1, 0.1], [0.3, 0.2]],
[[0.5, 0.3], [0.7, 0.4]]])
self.assertAllClose(
groundtruth_keypoint_weights,
[[1.0, 1.0], [1.0, 1.0]])
class PadInputDataToStaticShapesFnTest(test_case.TestCase):
def test_pad_images_boxes_and_classes(self):
input_tensor_dict = {
fields.InputDataFields.image:
tf.random.uniform([3, 3, 3]),
fields.InputDataFields.groundtruth_boxes:
tf.random.uniform([2, 4]),
fields.InputDataFields.groundtruth_classes:
tf.random.uniform([2, 3], minval=0, maxval=2, dtype=tf.int32),
fields.InputDataFields.true_image_shape:
tf.constant([3, 3, 3]),
fields.InputDataFields.original_image_spatial_shape:
tf.constant([3, 3])
}
padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
tensor_dict=input_tensor_dict,
max_num_boxes=3,
num_classes=3,
spatial_image_shape=[5, 6])
self.assertAllEqual(
padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
[5, 6, 3])
self.assertAllEqual(
padded_tensor_dict[fields.InputDataFields.true_image_shape]
.shape.as_list(), [3])
self.assertAllEqual(
padded_tensor_dict[fields.InputDataFields.original_image_spatial_shape]
.shape.as_list(), [2])
self.assertAllEqual(
padded_tensor_dict[fields.InputDataFields.groundtruth_boxes]
.shape.as_list(), [3, 4])
self.assertAllEqual(
padded_tensor_dict[fields.InputDataFields.groundtruth_classes]
.shape.as_list(), [3, 3])
def test_clip_boxes_and_classes(self):
def graph_fn():
input_tensor_dict = {
fields.InputDataFields.groundtruth_boxes:
tf.random.uniform([5, 4]),
fields.InputDataFields.groundtruth_classes:
tf.random.uniform([2, 3], maxval=10, dtype=tf.int32),
fields.InputDataFields.num_groundtruth_boxes:
tf.constant(5)
}
padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
tensor_dict=input_tensor_dict,
max_num_boxes=3,
num_classes=3,
spatial_image_shape=[5, 6])
return (padded_tensor_dict[fields.InputDataFields.groundtruth_boxes],
padded_tensor_dict[fields.InputDataFields.groundtruth_classes],
padded_tensor_dict[fields.InputDataFields.num_groundtruth_boxes])
(groundtruth_boxes, groundtruth_classes,
num_groundtruth_boxes) = self.execute_cpu(graph_fn, [])
self.assertAllEqual(groundtruth_boxes.shape, [3, 4])
self.assertAllEqual(groundtruth_classes.shape, [3, 3])
self.assertEqual(num_groundtruth_boxes, 3)
def test_images_and_additional_channels(self):
input_tensor_dict = {
fields.InputDataFields.image:
test_utils.image_with_dynamic_shape(4, 3, 5),
fields.InputDataFields.image_additional_channels:
test_utils.image_with_dynamic_shape(4, 3, 2),
}
padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
tensor_dict=input_tensor_dict,
max_num_boxes=3,
num_classes=3,
spatial_image_shape=[5, 6])
# pad_input_data_to_static_shape assumes that image is already concatenated
# with additional channels.
self.assertAllEqual(
padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
[5, 6, 5])
self.assertAllEqual(
padded_tensor_dict[fields.InputDataFields.image_additional_channels]
.shape.as_list(), [5, 6, 2])
def test_images_and_additional_channels_errors(self):
input_tensor_dict = {
fields.InputDataFields.image:
test_utils.image_with_dynamic_shape(10, 10, 3),
fields.InputDataFields.image_additional_channels:
test_utils.image_with_dynamic_shape(10, 10, 2),
fields.InputDataFields.original_image:
test_utils.image_with_dynamic_shape(10, 10, 3),
}
with self.assertRaises(ValueError):
_ = inputs.pad_input_data_to_static_shapes(
tensor_dict=input_tensor_dict,
max_num_boxes=3,
num_classes=3,
spatial_image_shape=[5, 6])
def test_gray_images(self):
input_tensor_dict = {
fields.InputDataFields.image:
test_utils.image_with_dynamic_shape(4, 4, 1),
}
padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
tensor_dict=input_tensor_dict,
max_num_boxes=3,
num_classes=3,
spatial_image_shape=[5, 6])
self.assertAllEqual(
padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
[5, 6, 1])
def test_gray_images_and_additional_channels(self):
input_tensor_dict = {
fields.InputDataFields.image:
test_utils.image_with_dynamic_shape(4, 4, 3),
fields.InputDataFields.image_additional_channels:
test_utils.image_with_dynamic_shape(4, 4, 2),
}
# pad_input_data_to_static_shape assumes that image is already concatenated
# with additional channels.
padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
tensor_dict=input_tensor_dict,
max_num_boxes=3,
num_classes=3,
spatial_image_shape=[5, 6])
self.assertAllEqual(
padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
[5, 6, 3])
self.assertAllEqual(
padded_tensor_dict[fields.InputDataFields.image_additional_channels]
.shape.as_list(), [5, 6, 2])
def test_keypoints(self):
keypoints = test_utils.keypoints_with_dynamic_shape(10, 16, 4)
visibilities = tf.cast(tf.random.uniform(tf.shape(keypoints)[:-1], minval=0,
maxval=2, dtype=tf.int32), tf.bool)
input_tensor_dict = {
fields.InputDataFields.groundtruth_keypoints:
test_utils.keypoints_with_dynamic_shape(10, 16, 4),
fields.InputDataFields.groundtruth_keypoint_visibilities:
visibilities
}
padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
tensor_dict=input_tensor_dict,
max_num_boxes=3,
num_classes=3,
spatial_image_shape=[5, 6])
self.assertAllEqual(
padded_tensor_dict[fields.InputDataFields.groundtruth_keypoints]
.shape.as_list(), [3, 16, 4])
self.assertAllEqual(
padded_tensor_dict[
fields.InputDataFields.groundtruth_keypoint_visibilities]
.shape.as_list(), [3, 16])
def test_context_features(self):
context_memory_size = 8
context_feature_length = 10
max_num_context_features = 20
def graph_fn():
input_tensor_dict = {
fields.InputDataFields.context_features:
tf.ones([context_memory_size, context_feature_length]),
fields.InputDataFields.context_feature_length:
tf.constant(context_feature_length)
}
padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
tensor_dict=input_tensor_dict,
max_num_boxes=3,
num_classes=3,
spatial_image_shape=[5, 6],
max_num_context_features=max_num_context_features,
context_feature_length=context_feature_length)
self.assertAllEqual(
padded_tensor_dict[
fields.InputDataFields.context_features].shape.as_list(),
[max_num_context_features, context_feature_length])
return padded_tensor_dict[fields.InputDataFields.valid_context_size]
valid_context_size = self.execute_cpu(graph_fn, [])
self.assertEqual(valid_context_size, context_memory_size)
class NegativeSizeTest(test_case.TestCase):
"""Test for inputs and related funcitons."""
def test_negative_size_error(self):
"""Test that error is raised for negative size boxes."""
def graph_fn():
tensors = {
fields.InputDataFields.image: tf.zeros((128, 128, 3)),
fields.InputDataFields.groundtruth_classes:
tf.constant([1, 1], tf.int32),
fields.InputDataFields.groundtruth_boxes:
tf.constant([[0.5, 0.5, 0.4, 0.5]], tf.float32)
}
tensors = inputs.transform_input_data(
tensors, _fake_model_preprocessor_fn, _fake_image_resizer_fn,
num_classes=10)
return tensors[fields.InputDataFields.groundtruth_boxes]
with self.assertRaises(tf.errors.InvalidArgumentError):
self.execute_cpu(graph_fn, [])
def test_negative_size_no_assert(self):
"""Test that negative size boxes are filtered out without assert.
This test simulates the behaviour when we run on TPU and Assert ops are
not supported.
"""
tensors = {
fields.InputDataFields.image: tf.zeros((128, 128, 3)),
fields.InputDataFields.groundtruth_classes:
tf.constant([1, 1], tf.int32),
fields.InputDataFields.groundtruth_boxes:
tf.constant([[0.5, 0.5, 0.4, 0.5], [0.5, 0.5, 0.6, 0.6]],
tf.float32)
}
with mock.patch.object(tf, 'Assert') as tf_assert:
tf_assert.return_value = tf.no_op()
tensors = inputs.transform_input_data(
tensors, _fake_model_preprocessor_fn, _fake_image_resizer_fn,
num_classes=10)
self.assertAllClose(tensors[fields.InputDataFields.groundtruth_boxes],
[[0.5, 0.5, 0.6, 0.6]])
if __name__ == '__main__':
tf.test.main()