NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
5.46 kB
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Evaluation executable for detection models.
This executable is used to evaluate DetectionModels. There are two ways of
configuring the eval job.
1) A single pipeline_pb2.TrainEvalPipelineConfig file maybe specified instead.
In this mode, the --eval_training_data flag may be given to force the pipeline
to evaluate on training data instead.
Example usage:
./eval \
--logtostderr \
--checkpoint_dir=path/to/checkpoint_dir \
--eval_dir=path/to/eval_dir \
--pipeline_config_path=pipeline_config.pbtxt
2) Three configuration files may be provided: a model_pb2.DetectionModel
configuration file to define what type of DetectionModel is being evaluated, an
input_reader_pb2.InputReader file to specify what data the model is evaluating
and an eval_pb2.EvalConfig file to configure evaluation parameters.
Example usage:
./eval \
--logtostderr \
--checkpoint_dir=path/to/checkpoint_dir \
--eval_dir=path/to/eval_dir \
--eval_config_path=eval_config.pbtxt \
--model_config_path=model_config.pbtxt \
--input_config_path=eval_input_config.pbtxt
"""
import functools
import os
import tensorflow.compat.v1 as tf
from tensorflow.python.util.deprecation import deprecated
from object_detection.builders import dataset_builder
from object_detection.builders import graph_rewriter_builder
from object_detection.builders import model_builder
from object_detection.legacy import evaluator
from object_detection.utils import config_util
from object_detection.utils import label_map_util
tf.logging.set_verbosity(tf.logging.INFO)
flags = tf.app.flags
flags.DEFINE_boolean('eval_training_data', False,
'If training data should be evaluated for this job.')
flags.DEFINE_string(
'checkpoint_dir', '',
'Directory containing checkpoints to evaluate, typically '
'set to `train_dir` used in the training job.')
flags.DEFINE_string('eval_dir', '', 'Directory to write eval summaries to.')
flags.DEFINE_string(
'pipeline_config_path', '',
'Path to a pipeline_pb2.TrainEvalPipelineConfig config '
'file. If provided, other configs are ignored')
flags.DEFINE_string('eval_config_path', '',
'Path to an eval_pb2.EvalConfig config file.')
flags.DEFINE_string('input_config_path', '',
'Path to an input_reader_pb2.InputReader config file.')
flags.DEFINE_string('model_config_path', '',
'Path to a model_pb2.DetectionModel config file.')
flags.DEFINE_boolean(
'run_once', False, 'Option to only run a single pass of '
'evaluation. Overrides the `max_evals` parameter in the '
'provided config.')
FLAGS = flags.FLAGS
@deprecated(None, 'Use object_detection/model_main.py.')
def main(unused_argv):
assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.'
assert FLAGS.eval_dir, '`eval_dir` is missing.'
tf.gfile.MakeDirs(FLAGS.eval_dir)
if FLAGS.pipeline_config_path:
configs = config_util.get_configs_from_pipeline_file(
FLAGS.pipeline_config_path)
tf.gfile.Copy(
FLAGS.pipeline_config_path,
os.path.join(FLAGS.eval_dir, 'pipeline.config'),
overwrite=True)
else:
configs = config_util.get_configs_from_multiple_files(
model_config_path=FLAGS.model_config_path,
eval_config_path=FLAGS.eval_config_path,
eval_input_config_path=FLAGS.input_config_path)
for name, config in [('model.config', FLAGS.model_config_path),
('eval.config', FLAGS.eval_config_path),
('input.config', FLAGS.input_config_path)]:
tf.gfile.Copy(config, os.path.join(FLAGS.eval_dir, name), overwrite=True)
model_config = configs['model']
eval_config = configs['eval_config']
input_config = configs['eval_input_config']
if FLAGS.eval_training_data:
input_config = configs['train_input_config']
model_fn = functools.partial(
model_builder.build, model_config=model_config, is_training=False)
def get_next(config):
return dataset_builder.make_initializable_iterator(
dataset_builder.build(config)).get_next()
create_input_dict_fn = functools.partial(get_next, input_config)
categories = label_map_util.create_categories_from_labelmap(
input_config.label_map_path)
if FLAGS.run_once:
eval_config.max_evals = 1
graph_rewriter_fn = None
if 'graph_rewriter_config' in configs:
graph_rewriter_fn = graph_rewriter_builder.build(
configs['graph_rewriter_config'], is_training=False)
evaluator.evaluate(
create_input_dict_fn,
model_fn,
eval_config,
categories,
FLAGS.checkpoint_dir,
FLAGS.eval_dir,
graph_hook_fn=graph_rewriter_fn)
if __name__ == '__main__':
tf.app.run()