Spaces:
Running
Running
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
r"""Runs evaluation using OpenImages groundtruth and predictions. | |
Example usage: | |
python \ | |
models/research/object_detection/metrics/oid_vrd_challenge_evaluation.py \ | |
--input_annotations_vrd=/path/to/input/annotations-human-bbox.csv \ | |
--input_annotations_labels=/path/to/input/annotations-label.csv \ | |
--input_class_labelmap=/path/to/input/class_labelmap.pbtxt \ | |
--input_relationship_labelmap=/path/to/input/relationship_labelmap.pbtxt \ | |
--input_predictions=/path/to/input/predictions.csv \ | |
--output_metrics=/path/to/output/metric.csv \ | |
CSVs with bounding box annotations and image label (including the image URLs) | |
can be downloaded from the Open Images Challenge website: | |
https://storage.googleapis.com/openimages/web/challenge.html | |
The format of the input csv and the metrics itself are described on the | |
challenge website. | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import argparse | |
import pandas as pd | |
from google.protobuf import text_format | |
from object_detection.metrics import io_utils | |
from object_detection.metrics import oid_vrd_challenge_evaluation_utils as utils | |
from object_detection.protos import string_int_label_map_pb2 | |
from object_detection.utils import vrd_evaluation | |
def _load_labelmap(labelmap_path): | |
"""Loads labelmap from the labelmap path. | |
Args: | |
labelmap_path: Path to the labelmap. | |
Returns: | |
A dictionary mapping class name to class numerical id. | |
""" | |
label_map = string_int_label_map_pb2.StringIntLabelMap() | |
with open(labelmap_path, 'r') as fid: | |
label_map_string = fid.read() | |
text_format.Merge(label_map_string, label_map) | |
labelmap_dict = {} | |
for item in label_map.item: | |
labelmap_dict[item.name] = item.id | |
return labelmap_dict | |
def _swap_labelmap_dict(labelmap_dict): | |
"""Swaps keys and labels in labelmap. | |
Args: | |
labelmap_dict: Input dictionary. | |
Returns: | |
A dictionary mapping class name to class numerical id. | |
""" | |
return dict((v, k) for k, v in labelmap_dict.iteritems()) | |
def main(parsed_args): | |
all_box_annotations = pd.read_csv(parsed_args.input_annotations_boxes) | |
all_label_annotations = pd.read_csv(parsed_args.input_annotations_labels) | |
all_annotations = pd.concat([all_box_annotations, all_label_annotations]) | |
class_label_map = _load_labelmap(parsed_args.input_class_labelmap) | |
relationship_label_map = _load_labelmap( | |
parsed_args.input_relationship_labelmap) | |
relation_evaluator = vrd_evaluation.VRDRelationDetectionEvaluator() | |
phrase_evaluator = vrd_evaluation.VRDPhraseDetectionEvaluator() | |
for _, groundtruth in enumerate(all_annotations.groupby('ImageID')): | |
image_id, image_groundtruth = groundtruth | |
groundtruth_dictionary = utils.build_groundtruth_vrd_dictionary( | |
image_groundtruth, class_label_map, relationship_label_map) | |
relation_evaluator.add_single_ground_truth_image_info( | |
image_id, groundtruth_dictionary) | |
phrase_evaluator.add_single_ground_truth_image_info(image_id, | |
groundtruth_dictionary) | |
all_predictions = pd.read_csv(parsed_args.input_predictions) | |
for _, prediction_data in enumerate(all_predictions.groupby('ImageID')): | |
image_id, image_predictions = prediction_data | |
prediction_dictionary = utils.build_predictions_vrd_dictionary( | |
image_predictions, class_label_map, relationship_label_map) | |
relation_evaluator.add_single_detected_image_info(image_id, | |
prediction_dictionary) | |
phrase_evaluator.add_single_detected_image_info(image_id, | |
prediction_dictionary) | |
relation_metrics = relation_evaluator.evaluate( | |
relationships=_swap_labelmap_dict(relationship_label_map)) | |
phrase_metrics = phrase_evaluator.evaluate( | |
relationships=_swap_labelmap_dict(relationship_label_map)) | |
with open(parsed_args.output_metrics, 'w') as fid: | |
io_utils.write_csv(fid, relation_metrics) | |
io_utils.write_csv(fid, phrase_metrics) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser( | |
description= | |
'Evaluate Open Images Visual Relationship Detection predictions.') | |
parser.add_argument( | |
'--input_annotations_vrd', | |
required=True, | |
help='File with groundtruth vrd annotations.') | |
parser.add_argument( | |
'--input_annotations_labels', | |
required=True, | |
help='File with groundtruth labels annotations') | |
parser.add_argument( | |
'--input_predictions', | |
required=True, | |
help="""File with detection predictions; NOTE: no postprocessing is | |
applied in the evaluation script.""") | |
parser.add_argument( | |
'--input_class_labelmap', | |
required=True, | |
help="""OpenImages Challenge labelmap; note: it is expected to include | |
attributes.""") | |
parser.add_argument( | |
'--input_relationship_labelmap', | |
required=True, | |
help="""OpenImages Challenge relationship labelmap.""") | |
parser.add_argument( | |
'--output_metrics', required=True, help='Output file with csv metrics') | |
args = parser.parse_args() | |
main(args) | |