Spaces:
Running
Running
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Label map utility functions.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import collections | |
import logging | |
import numpy as np | |
from six import string_types | |
from six.moves import range | |
import tensorflow.compat.v1 as tf | |
from google.protobuf import text_format | |
from object_detection.protos import string_int_label_map_pb2 | |
_LABEL_OFFSET = 1 | |
def _validate_label_map(label_map): | |
"""Checks if a label map is valid. | |
Args: | |
label_map: StringIntLabelMap to validate. | |
Raises: | |
ValueError: if label map is invalid. | |
""" | |
for item in label_map.item: | |
if item.id < 0: | |
raise ValueError('Label map ids should be >= 0.') | |
if (item.id == 0 and item.name != 'background' and | |
item.display_name != 'background'): | |
raise ValueError('Label map id 0 is reserved for the background label') | |
def create_category_index(categories): | |
"""Creates dictionary of COCO compatible categories keyed by category id. | |
Args: | |
categories: a list of dicts, each of which has the following keys: | |
'id': (required) an integer id uniquely identifying this category. | |
'name': (required) string representing category name | |
e.g., 'cat', 'dog', 'pizza'. | |
Returns: | |
category_index: a dict containing the same entries as categories, but keyed | |
by the 'id' field of each category. | |
""" | |
category_index = {} | |
for cat in categories: | |
category_index[cat['id']] = cat | |
return category_index | |
def get_max_label_map_index(label_map): | |
"""Get maximum index in label map. | |
Args: | |
label_map: a StringIntLabelMapProto | |
Returns: | |
an integer | |
""" | |
return max([item.id for item in label_map.item]) | |
def convert_label_map_to_categories(label_map, | |
max_num_classes, | |
use_display_name=True): | |
"""Given label map proto returns categories list compatible with eval. | |
This function converts label map proto and returns a list of dicts, each of | |
which has the following keys: | |
'id': (required) an integer id uniquely identifying this category. | |
'name': (required) string representing category name | |
e.g., 'cat', 'dog', 'pizza'. | |
'keypoints': (optional) a dictionary of keypoint string 'label' to integer | |
'id'. | |
We only allow class into the list if its id-label_id_offset is | |
between 0 (inclusive) and max_num_classes (exclusive). | |
If there are several items mapping to the same id in the label map, | |
we will only keep the first one in the categories list. | |
Args: | |
label_map: a StringIntLabelMapProto or None. If None, a default categories | |
list is created with max_num_classes categories. | |
max_num_classes: maximum number of (consecutive) label indices to include. | |
use_display_name: (boolean) choose whether to load 'display_name' field as | |
category name. If False or if the display_name field does not exist, uses | |
'name' field as category names instead. | |
Returns: | |
categories: a list of dictionaries representing all possible categories. | |
""" | |
categories = [] | |
list_of_ids_already_added = [] | |
if not label_map: | |
label_id_offset = 1 | |
for class_id in range(max_num_classes): | |
categories.append({ | |
'id': class_id + label_id_offset, | |
'name': 'category_{}'.format(class_id + label_id_offset) | |
}) | |
return categories | |
for item in label_map.item: | |
if not 0 < item.id <= max_num_classes: | |
logging.info( | |
'Ignore item %d since it falls outside of requested ' | |
'label range.', item.id) | |
continue | |
if use_display_name and item.HasField('display_name'): | |
name = item.display_name | |
else: | |
name = item.name | |
if item.id not in list_of_ids_already_added: | |
list_of_ids_already_added.append(item.id) | |
category = {'id': item.id, 'name': name} | |
if item.keypoints: | |
keypoints = {} | |
list_of_keypoint_ids = [] | |
for kv in item.keypoints: | |
if kv.id in list_of_keypoint_ids: | |
raise ValueError('Duplicate keypoint ids are not allowed. ' | |
'Found {} more than once'.format(kv.id)) | |
keypoints[kv.label] = kv.id | |
list_of_keypoint_ids.append(kv.id) | |
category['keypoints'] = keypoints | |
categories.append(category) | |
return categories | |
def load_labelmap(path): | |
"""Loads label map proto. | |
Args: | |
path: path to StringIntLabelMap proto text file. | |
Returns: | |
a StringIntLabelMapProto | |
""" | |
with tf.io.gfile.GFile(path, 'r') as fid: | |
label_map_string = fid.read() | |
label_map = string_int_label_map_pb2.StringIntLabelMap() | |
try: | |
text_format.Merge(label_map_string, label_map) | |
except text_format.ParseError: | |
label_map.ParseFromString(label_map_string) | |
_validate_label_map(label_map) | |
return label_map | |
def get_label_map_dict(label_map_path_or_proto, | |
use_display_name=False, | |
fill_in_gaps_and_background=False): | |
"""Reads a label map and returns a dictionary of label names to id. | |
Args: | |
label_map_path_or_proto: path to StringIntLabelMap proto text file or the | |
proto itself. | |
use_display_name: whether to use the label map items' display names as keys. | |
fill_in_gaps_and_background: whether to fill in gaps and background with | |
respect to the id field in the proto. The id: 0 is reserved for the | |
'background' class and will be added if it is missing. All other missing | |
ids in range(1, max(id)) will be added with a dummy class name | |
("class_<id>") if they are missing. | |
Returns: | |
A dictionary mapping label names to id. | |
Raises: | |
ValueError: if fill_in_gaps_and_background and label_map has non-integer or | |
negative values. | |
""" | |
if isinstance(label_map_path_or_proto, string_types): | |
label_map = load_labelmap(label_map_path_or_proto) | |
else: | |
_validate_label_map(label_map_path_or_proto) | |
label_map = label_map_path_or_proto | |
label_map_dict = {} | |
for item in label_map.item: | |
if use_display_name: | |
label_map_dict[item.display_name] = item.id | |
else: | |
label_map_dict[item.name] = item.id | |
if fill_in_gaps_and_background: | |
values = set(label_map_dict.values()) | |
if 0 not in values: | |
label_map_dict['background'] = 0 | |
if not all(isinstance(value, int) for value in values): | |
raise ValueError('The values in label map must be integers in order to' | |
'fill_in_gaps_and_background.') | |
if not all(value >= 0 for value in values): | |
raise ValueError('The values in the label map must be positive.') | |
if len(values) != max(values) + 1: | |
# there are gaps in the labels, fill in gaps. | |
for value in range(1, max(values)): | |
if value not in values: | |
# TODO(rathodv): Add a prefix 'class_' here once the tool to generate | |
# teacher annotation adds this prefix in the data. | |
label_map_dict[str(value)] = value | |
return label_map_dict | |
def get_label_map_hierarchy_lut(label_map_path_or_proto, | |
include_identity=False): | |
"""Reads a label map and returns ancestors and descendants in the hierarchy. | |
The function returns the ancestors and descendants as separate look up tables | |
(LUT) numpy arrays of shape [max_id, max_id] where lut[i,j] = 1 when there is | |
a hierarchical relationship between class i and j. | |
Args: | |
label_map_path_or_proto: path to StringIntLabelMap proto text file or the | |
proto itself. | |
include_identity: Boolean to indicate whether to include a class element | |
among its ancestors and descendants. Setting this will result in the lut | |
diagonal being set to 1. | |
Returns: | |
ancestors_lut: Look up table with the ancestors. | |
descendants_lut: Look up table with the descendants. | |
""" | |
if isinstance(label_map_path_or_proto, string_types): | |
label_map = load_labelmap(label_map_path_or_proto) | |
else: | |
_validate_label_map(label_map_path_or_proto) | |
label_map = label_map_path_or_proto | |
hierarchy_dict = { | |
'ancestors': collections.defaultdict(list), | |
'descendants': collections.defaultdict(list) | |
} | |
max_id = -1 | |
for item in label_map.item: | |
max_id = max(max_id, item.id) | |
for ancestor in item.ancestor_ids: | |
hierarchy_dict['ancestors'][item.id].append(ancestor) | |
for descendant in item.descendant_ids: | |
hierarchy_dict['descendants'][item.id].append(descendant) | |
def get_graph_relations_tensor(graph_relations): | |
graph_relations_tensor = np.zeros([max_id, max_id]) | |
for id_val, ids_related in graph_relations.items(): | |
id_val = int(id_val) - _LABEL_OFFSET | |
for id_related in ids_related: | |
id_related -= _LABEL_OFFSET | |
graph_relations_tensor[id_val, id_related] = 1 | |
if include_identity: | |
graph_relations_tensor += np.eye(max_id) | |
return graph_relations_tensor | |
ancestors_lut = get_graph_relations_tensor(hierarchy_dict['ancestors']) | |
descendants_lut = get_graph_relations_tensor(hierarchy_dict['descendants']) | |
return ancestors_lut, descendants_lut | |
def create_categories_from_labelmap(label_map_path, use_display_name=True): | |
"""Reads a label map and returns categories list compatible with eval. | |
This function converts label map proto and returns a list of dicts, each of | |
which has the following keys: | |
'id': an integer id uniquely identifying this category. | |
'name': string representing category name e.g., 'cat', 'dog'. | |
'keypoints': a dictionary of keypoint string label to integer id. It is only | |
returned when available in label map proto. | |
Args: | |
label_map_path: Path to `StringIntLabelMap` proto text file. | |
use_display_name: (boolean) choose whether to load 'display_name' field | |
as category name. If False or if the display_name field does not exist, | |
uses 'name' field as category names instead. | |
Returns: | |
categories: a list of dictionaries representing all possible categories. | |
""" | |
label_map = load_labelmap(label_map_path) | |
max_num_classes = max(item.id for item in label_map.item) | |
return convert_label_map_to_categories(label_map, max_num_classes, | |
use_display_name) | |
def create_category_index_from_labelmap(label_map_path, use_display_name=True): | |
"""Reads a label map and returns a category index. | |
Args: | |
label_map_path: Path to `StringIntLabelMap` proto text file. | |
use_display_name: (boolean) choose whether to load 'display_name' field | |
as category name. If False or if the display_name field does not exist, | |
uses 'name' field as category names instead. | |
Returns: | |
A category index, which is a dictionary that maps integer ids to dicts | |
containing categories, e.g. | |
{1: {'id': 1, 'name': 'dog'}, 2: {'id': 2, 'name': 'cat'}, ...} | |
""" | |
categories = create_categories_from_labelmap(label_map_path, use_display_name) | |
return create_category_index(categories) | |
def create_class_agnostic_category_index(): | |
"""Creates a category index with a single `object` class.""" | |
return {1: {'id': 1, 'name': 'object'}} | |