Spaces:
Running
Running
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests for object_detection.utils.patch_ops.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
from absl.testing import parameterized | |
import numpy as np | |
import tensorflow.compat.v1 as tf | |
from object_detection.utils import patch_ops | |
from object_detection.utils import test_case | |
class GetPatchMaskTest(test_case.TestCase, parameterized.TestCase): | |
def testMaskShape(self): | |
image_shape = [15, 10] | |
mask = patch_ops.get_patch_mask( | |
10, 5, patch_size=3, image_shape=image_shape) | |
self.assertListEqual(mask.shape.as_list(), image_shape) | |
def testHandleImageShapeWithChannels(self): | |
image_shape = [15, 10, 3] | |
mask = patch_ops.get_patch_mask( | |
10, 5, patch_size=3, image_shape=image_shape) | |
self.assertListEqual(mask.shape.as_list(), image_shape[:2]) | |
def testMaskDType(self): | |
mask = patch_ops.get_patch_mask(2, 3, patch_size=2, image_shape=[6, 7]) | |
self.assertDTypeEqual(mask, bool) | |
def testMaskAreaWithEvenPatchSize(self): | |
image_shape = [6, 7] | |
mask = patch_ops.get_patch_mask(2, 3, patch_size=2, image_shape=image_shape) | |
expected_mask = np.array([ | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 1, 1, 0, 0, 0], | |
[0, 0, 1, 1, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
]).reshape(image_shape).astype(bool) | |
self.assertAllEqual(mask, expected_mask) | |
def testMaskAreaWithEvenPatchSize4(self): | |
image_shape = [6, 7] | |
mask = patch_ops.get_patch_mask(2, 3, patch_size=4, image_shape=image_shape) | |
expected_mask = np.array([ | |
[0, 1, 1, 1, 1, 0, 0], | |
[0, 1, 1, 1, 1, 0, 0], | |
[0, 1, 1, 1, 1, 0, 0], | |
[0, 1, 1, 1, 1, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
]).reshape(image_shape).astype(bool) | |
self.assertAllEqual(mask, expected_mask) | |
def testMaskAreaWithOddPatchSize(self): | |
image_shape = [6, 7] | |
mask = patch_ops.get_patch_mask(2, 3, patch_size=3, image_shape=image_shape) | |
expected_mask = np.array([ | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
]).reshape(image_shape).astype(bool) | |
self.assertAllEqual(mask, expected_mask) | |
def testMaskAreaPartiallyOutsideImage(self): | |
image_shape = [6, 7] | |
mask = patch_ops.get_patch_mask(5, 6, patch_size=5, image_shape=image_shape) | |
expected_mask = np.array([ | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 1, 1, 1], | |
[0, 0, 0, 0, 1, 1, 1], | |
[0, 0, 0, 0, 1, 1, 1], | |
]).reshape(image_shape).astype(bool) | |
self.assertAllEqual(mask, expected_mask) | |
def testStaticCoordinatesOutsideImageRaisesError(self, y, x): | |
image_shape = [15, 10] | |
with self.assertRaises(tf.errors.InvalidArgumentError): | |
patch_ops.get_patch_mask(y, x, patch_size=3, image_shape=image_shape) | |
def testDynamicCoordinatesOutsideImageRaisesError(self): | |
def graph_fn(): | |
image_shape = [15, 10] | |
x = tf.random_uniform([], minval=-2, maxval=-1, dtype=tf.int32) | |
y = tf.random_uniform([], minval=0, maxval=1, dtype=tf.int32) | |
mask = patch_ops.get_patch_mask( | |
y, x, patch_size=3, image_shape=image_shape) | |
return mask | |
with self.assertRaises(tf.errors.InvalidArgumentError): | |
self.execute(graph_fn, []) | |
def testStaticNonPositivePatchSizeRaisesError(self, patch_size): | |
image_shape = [6, 7] | |
with self.assertRaises(tf.errors.InvalidArgumentError): | |
patch_ops.get_patch_mask( | |
0, 0, patch_size=patch_size, image_shape=image_shape) | |
def testDynamicNonPositivePatchSizeRaisesError(self): | |
def graph_fn(): | |
image_shape = [6, 7] | |
patch_size = -1 * tf.random_uniform([], minval=0, maxval=3, | |
dtype=tf.int32) | |
mask = patch_ops.get_patch_mask( | |
0, 0, patch_size=patch_size, image_shape=image_shape) | |
return mask | |
with self.assertRaises(tf.errors.InvalidArgumentError): | |
self.execute(graph_fn, []) | |
if __name__ == '__main__': | |
tf.test.main() | |