NCTC / models /research /real_nvp /imnet_formatting.py
NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
3.3 kB
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""LSUN dataset formatting.
Download and format the Imagenet dataset as follow:
mkdir [IMAGENET_PATH]
cd [IMAGENET_PATH]
for FILENAME in train_32x32.tar valid_32x32.tar train_64x64.tar valid_64x64.tar
do
curl -O http://image-net.org/small/$FILENAME
tar -xvf $FILENAME
done
Then use the script as follow:
for DIRNAME in train_32x32 valid_32x32 train_64x64 valid_64x64
do
python imnet_formatting.py \
--file_out $DIRNAME \
--fn_root $DIRNAME
done
"""
from __future__ import print_function
import os
import os.path
import scipy.io
import scipy.io.wavfile
import scipy.ndimage
import tensorflow as tf
tf.flags.DEFINE_string("file_out", "",
"Filename of the output .tfrecords file.")
tf.flags.DEFINE_string("fn_root", "", "Name of root file path.")
FLAGS = tf.flags.FLAGS
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def main():
"""Main converter function."""
# LSUN
fn_root = FLAGS.fn_root
img_fn_list = os.listdir(fn_root)
img_fn_list = [img_fn for img_fn in img_fn_list
if img_fn.endswith('.png')]
num_examples = len(img_fn_list)
n_examples_per_file = 10000
for example_idx, img_fn in enumerate(img_fn_list):
if example_idx % n_examples_per_file == 0:
file_out = "%s_%05d.tfrecords"
file_out = file_out % (FLAGS.file_out,
example_idx // n_examples_per_file)
print("Writing on:", file_out)
writer = tf.python_io.TFRecordWriter(file_out)
if example_idx % 1000 == 0:
print(example_idx, "/", num_examples)
image_raw = scipy.ndimage.imread(os.path.join(fn_root, img_fn))
rows = image_raw.shape[0]
cols = image_raw.shape[1]
depth = image_raw.shape[2]
image_raw = image_raw.astype("uint8")
image_raw = image_raw.tostring()
example = tf.train.Example(
features=tf.train.Features(
feature={
"height": _int64_feature(rows),
"width": _int64_feature(cols),
"depth": _int64_feature(depth),
"image_raw": _bytes_feature(image_raw)
}
)
)
writer.write(example.SerializeToString())
if example_idx % n_examples_per_file == (n_examples_per_file - 1):
writer.close()
writer.close()
if __name__ == "__main__":
main()