Spaces:
Running
Running
# Lint as: python2, python3 | |
# Copyright 2019 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests for eval_coco_format script.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import os | |
from absl import flags | |
from absl.testing import absltest | |
import evaluation as panopticapi_eval | |
from deeplab.evaluation import eval_coco_format | |
_TEST_DIR = 'deeplab/evaluation/testdata' | |
FLAGS = flags.FLAGS | |
class EvalCocoFormatTest(absltest.TestCase): | |
def test_compare_pq_with_reference_eval(self): | |
sample_data_dir = os.path.join(_TEST_DIR) | |
gt_json_file = os.path.join(sample_data_dir, 'coco_gt.json') | |
gt_folder = os.path.join(sample_data_dir, 'coco_gt') | |
pred_json_file = os.path.join(sample_data_dir, 'coco_pred.json') | |
pred_folder = os.path.join(sample_data_dir, 'coco_pred') | |
panopticapi_results = panopticapi_eval.pq_compute( | |
gt_json_file, pred_json_file, gt_folder, pred_folder) | |
deeplab_results = eval_coco_format.eval_coco_format( | |
gt_json_file, | |
pred_json_file, | |
gt_folder, | |
pred_folder, | |
metric='pq', | |
num_categories=7, | |
ignored_label=0, | |
max_instances_per_category=256, | |
intersection_offset=(256 * 256)) | |
self.assertCountEqual( | |
list(deeplab_results.keys()), ['All', 'Things', 'Stuff']) | |
for cat_group in ['All', 'Things', 'Stuff']: | |
self.assertCountEqual(deeplab_results[cat_group], ['pq', 'sq', 'rq', 'n']) | |
for metric in ['pq', 'sq', 'rq', 'n']: | |
self.assertAlmostEqual(deeplab_results[cat_group][metric], | |
panopticapi_results[cat_group][metric]) | |
def test_compare_pc_with_golden_value(self): | |
sample_data_dir = os.path.join(_TEST_DIR) | |
gt_json_file = os.path.join(sample_data_dir, 'coco_gt.json') | |
gt_folder = os.path.join(sample_data_dir, 'coco_gt') | |
pred_json_file = os.path.join(sample_data_dir, 'coco_pred.json') | |
pred_folder = os.path.join(sample_data_dir, 'coco_pred') | |
deeplab_results = eval_coco_format.eval_coco_format( | |
gt_json_file, | |
pred_json_file, | |
gt_folder, | |
pred_folder, | |
metric='pc', | |
num_categories=7, | |
ignored_label=0, | |
max_instances_per_category=256, | |
intersection_offset=(256 * 256), | |
normalize_by_image_size=False) | |
self.assertCountEqual( | |
list(deeplab_results.keys()), ['All', 'Things', 'Stuff']) | |
for cat_group in ['All', 'Things', 'Stuff']: | |
self.assertCountEqual(deeplab_results[cat_group], ['pc', 'n']) | |
self.assertAlmostEqual(deeplab_results['All']['pc'], 0.68210561) | |
self.assertEqual(deeplab_results['All']['n'], 6) | |
self.assertAlmostEqual(deeplab_results['Things']['pc'], 0.5890529) | |
self.assertEqual(deeplab_results['Things']['n'], 4) | |
self.assertAlmostEqual(deeplab_results['Stuff']['pc'], 0.86821097) | |
self.assertEqual(deeplab_results['Stuff']['n'], 2) | |
def test_compare_pc_with_golden_value_normalize_by_size(self): | |
sample_data_dir = os.path.join(_TEST_DIR) | |
gt_json_file = os.path.join(sample_data_dir, 'coco_gt.json') | |
gt_folder = os.path.join(sample_data_dir, 'coco_gt') | |
pred_json_file = os.path.join(sample_data_dir, 'coco_pred.json') | |
pred_folder = os.path.join(sample_data_dir, 'coco_pred') | |
deeplab_results = eval_coco_format.eval_coco_format( | |
gt_json_file, | |
pred_json_file, | |
gt_folder, | |
pred_folder, | |
metric='pc', | |
num_categories=7, | |
ignored_label=0, | |
max_instances_per_category=256, | |
intersection_offset=(256 * 256), | |
normalize_by_image_size=True) | |
self.assertCountEqual( | |
list(deeplab_results.keys()), ['All', 'Things', 'Stuff']) | |
self.assertAlmostEqual(deeplab_results['All']['pc'], 0.68214908840) | |
def test_pc_with_multiple_workers(self): | |
sample_data_dir = os.path.join(_TEST_DIR) | |
gt_json_file = os.path.join(sample_data_dir, 'coco_gt.json') | |
gt_folder = os.path.join(sample_data_dir, 'coco_gt') | |
pred_json_file = os.path.join(sample_data_dir, 'coco_pred.json') | |
pred_folder = os.path.join(sample_data_dir, 'coco_pred') | |
deeplab_results = eval_coco_format.eval_coco_format( | |
gt_json_file, | |
pred_json_file, | |
gt_folder, | |
pred_folder, | |
metric='pc', | |
num_categories=7, | |
ignored_label=0, | |
max_instances_per_category=256, | |
intersection_offset=(256 * 256), | |
num_workers=3, | |
normalize_by_image_size=False) | |
self.assertCountEqual( | |
list(deeplab_results.keys()), ['All', 'Things', 'Stuff']) | |
self.assertAlmostEqual(deeplab_results['All']['pc'], 0.68210561668) | |
if __name__ == '__main__': | |
absltest.main() | |