Spaces:
Running
Running
# Lint as: python2, python3 | |
# Copyright 2019 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests for Parsing Covering metric.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
from absl.testing import absltest | |
import numpy as np | |
from deeplab.evaluation import parsing_covering | |
from deeplab.evaluation import test_utils | |
# See the definition of the color names at: | |
# https://en.wikipedia.org/wiki/Web_colors. | |
_CLASS_COLOR_MAP = { | |
(0, 0, 0): 0, | |
(0, 0, 255): 1, # Person (blue). | |
(255, 0, 0): 2, # Bear (red). | |
(0, 255, 0): 3, # Tree (lime). | |
(255, 0, 255): 4, # Bird (fuchsia). | |
(0, 255, 255): 5, # Sky (aqua). | |
(255, 255, 0): 6, # Cat (yellow). | |
} | |
class CoveringConveringTest(absltest.TestCase): | |
def test_perfect_match(self): | |
categories = np.zeros([6, 6], np.uint16) | |
instances = np.array([ | |
[2, 2, 2, 2, 2, 2], | |
[2, 4, 4, 4, 4, 2], | |
[2, 4, 4, 4, 4, 2], | |
[2, 4, 4, 4, 4, 2], | |
[2, 4, 4, 2, 2, 2], | |
[2, 4, 2, 2, 2, 2], | |
], | |
dtype=np.uint16) | |
pc = parsing_covering.ParsingCovering( | |
num_categories=3, | |
ignored_label=2, | |
max_instances_per_category=2, | |
offset=16, | |
normalize_by_image_size=False) | |
pc.compare_and_accumulate(categories, instances, categories, instances) | |
np.testing.assert_array_equal(pc.weighted_iou_per_class, [0.0, 21.0, 0.0]) | |
np.testing.assert_array_equal(pc.gt_area_per_class, [0.0, 21.0, 0.0]) | |
np.testing.assert_array_equal(pc.result_per_category(), [0.0, 1.0, 0.0]) | |
self.assertEqual(pc.result(), 1.0) | |
def test_totally_wrong(self): | |
categories = np.zeros([6, 6], np.uint16) | |
gt_instances = np.array([ | |
[0, 0, 0, 0, 0, 0], | |
[0, 1, 0, 0, 1, 0], | |
[0, 1, 1, 1, 1, 0], | |
[0, 1, 1, 1, 1, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
], | |
dtype=np.uint16) | |
pred_instances = 1 - gt_instances | |
pc = parsing_covering.ParsingCovering( | |
num_categories=2, | |
ignored_label=0, | |
max_instances_per_category=1, | |
offset=16, | |
normalize_by_image_size=False) | |
pc.compare_and_accumulate(categories, gt_instances, categories, | |
pred_instances) | |
np.testing.assert_array_equal(pc.weighted_iou_per_class, [0.0, 0.0]) | |
np.testing.assert_array_equal(pc.gt_area_per_class, [0.0, 10.0]) | |
np.testing.assert_array_equal(pc.result_per_category(), [0.0, 0.0]) | |
self.assertEqual(pc.result(), 0.0) | |
def test_matches_expected(self): | |
pred_classes = test_utils.read_segmentation_with_rgb_color_map( | |
'team_pred_class.png', _CLASS_COLOR_MAP) | |
pred_instances = test_utils.read_test_image( | |
'team_pred_instance.png', mode='L') | |
instance_class_map = { | |
0: 0, | |
47: 1, | |
97: 1, | |
133: 1, | |
150: 1, | |
174: 1, | |
198: 2, | |
215: 1, | |
244: 1, | |
255: 1, | |
} | |
gt_instances, gt_classes = test_utils.panoptic_segmentation_with_class_map( | |
'team_gt_instance.png', instance_class_map) | |
pc = parsing_covering.ParsingCovering( | |
num_categories=3, | |
ignored_label=0, | |
max_instances_per_category=256, | |
offset=256 * 256, | |
normalize_by_image_size=False) | |
pc.compare_and_accumulate(gt_classes, gt_instances, pred_classes, | |
pred_instances) | |
np.testing.assert_array_almost_equal( | |
pc.weighted_iou_per_class, [0.0, 39864.14634, 3136], decimal=4) | |
np.testing.assert_array_equal(pc.gt_area_per_class, [0.0, 56870, 5800]) | |
np.testing.assert_array_almost_equal( | |
pc.result_per_category(), [0.0, 0.70097, 0.54069], decimal=4) | |
self.assertAlmostEqual(pc.result(), 0.6208296732) | |
def test_matches_expected_normalize_by_size(self): | |
pred_classes = test_utils.read_segmentation_with_rgb_color_map( | |
'team_pred_class.png', _CLASS_COLOR_MAP) | |
pred_instances = test_utils.read_test_image( | |
'team_pred_instance.png', mode='L') | |
instance_class_map = { | |
0: 0, | |
47: 1, | |
97: 1, | |
133: 1, | |
150: 1, | |
174: 1, | |
198: 2, | |
215: 1, | |
244: 1, | |
255: 1, | |
} | |
gt_instances, gt_classes = test_utils.panoptic_segmentation_with_class_map( | |
'team_gt_instance.png', instance_class_map) | |
pc = parsing_covering.ParsingCovering( | |
num_categories=3, | |
ignored_label=0, | |
max_instances_per_category=256, | |
offset=256 * 256, | |
normalize_by_image_size=True) | |
pc.compare_and_accumulate(gt_classes, gt_instances, pred_classes, | |
pred_instances) | |
np.testing.assert_array_almost_equal( | |
pc.weighted_iou_per_class, [0.0, 0.5002088756, 0.03935002196], | |
decimal=4) | |
np.testing.assert_array_almost_equal( | |
pc.gt_area_per_class, [0.0, 0.7135955832, 0.07277746408], decimal=4) | |
# Note that the per-category and overall PCs are identical to those without | |
# normalization in the previous test, because we only have a single image. | |
np.testing.assert_array_almost_equal( | |
pc.result_per_category(), [0.0, 0.70097, 0.54069], decimal=4) | |
self.assertAlmostEqual(pc.result(), 0.6208296732) | |
if __name__ == '__main__': | |
absltest.main() | |