Spaces:
Running
Running
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Run ALBERT on SQuAD 1.1 and SQuAD 2.0 using sentence piece tokenization. | |
The file is forked from: | |
https://github.com/google-research/ALBERT/blob/master/run_squad_sp.py | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import collections | |
import copy | |
import json | |
import math | |
import os | |
from absl import logging | |
import numpy as np | |
import tensorflow as tf | |
from official.nlp.bert import tokenization | |
class SquadExample(object): | |
"""A single training/test example for simple sequence classification. | |
For examples without an answer, the start and end position are -1. | |
""" | |
def __init__(self, | |
qas_id, | |
question_text, | |
paragraph_text, | |
orig_answer_text=None, | |
start_position=None, | |
end_position=None, | |
is_impossible=False): | |
self.qas_id = qas_id | |
self.question_text = question_text | |
self.paragraph_text = paragraph_text | |
self.orig_answer_text = orig_answer_text | |
self.start_position = start_position | |
self.end_position = end_position | |
self.is_impossible = is_impossible | |
def __str__(self): | |
return self.__repr__() | |
def __repr__(self): | |
s = "" | |
s += "qas_id: %s" % (tokenization.printable_text(self.qas_id)) | |
s += ", question_text: %s" % ( | |
tokenization.printable_text(self.question_text)) | |
s += ", paragraph_text: [%s]" % (" ".join(self.paragraph_text)) | |
if self.start_position: | |
s += ", start_position: %d" % (self.start_position) | |
if self.start_position: | |
s += ", end_position: %d" % (self.end_position) | |
if self.start_position: | |
s += ", is_impossible: %r" % (self.is_impossible) | |
return s | |
class InputFeatures(object): | |
"""A single set of features of data.""" | |
def __init__(self, | |
unique_id, | |
example_index, | |
doc_span_index, | |
tok_start_to_orig_index, | |
tok_end_to_orig_index, | |
token_is_max_context, | |
tokens, | |
input_ids, | |
input_mask, | |
segment_ids, | |
paragraph_len, | |
start_position=None, | |
end_position=None, | |
is_impossible=None): | |
self.unique_id = unique_id | |
self.example_index = example_index | |
self.doc_span_index = doc_span_index | |
self.tok_start_to_orig_index = tok_start_to_orig_index | |
self.tok_end_to_orig_index = tok_end_to_orig_index | |
self.token_is_max_context = token_is_max_context | |
self.tokens = tokens | |
self.input_ids = input_ids | |
self.input_mask = input_mask | |
self.segment_ids = segment_ids | |
self.paragraph_len = paragraph_len | |
self.start_position = start_position | |
self.end_position = end_position | |
self.is_impossible = is_impossible | |
def read_squad_examples(input_file, is_training, version_2_with_negative): | |
"""Read a SQuAD json file into a list of SquadExample.""" | |
del version_2_with_negative | |
with tf.io.gfile.GFile(input_file, "r") as reader: | |
input_data = json.load(reader)["data"] | |
examples = [] | |
for entry in input_data: | |
for paragraph in entry["paragraphs"]: | |
paragraph_text = paragraph["context"] | |
for qa in paragraph["qas"]: | |
qas_id = qa["id"] | |
question_text = qa["question"] | |
start_position = None | |
orig_answer_text = None | |
is_impossible = False | |
if is_training: | |
is_impossible = qa.get("is_impossible", False) | |
if (len(qa["answers"]) != 1) and (not is_impossible): | |
raise ValueError( | |
"For training, each question should have exactly 1 answer.") | |
if not is_impossible: | |
answer = qa["answers"][0] | |
orig_answer_text = answer["text"] | |
start_position = answer["answer_start"] | |
else: | |
start_position = -1 | |
orig_answer_text = "" | |
example = SquadExample( | |
qas_id=qas_id, | |
question_text=question_text, | |
paragraph_text=paragraph_text, | |
orig_answer_text=orig_answer_text, | |
start_position=start_position, | |
is_impossible=is_impossible) | |
examples.append(example) | |
return examples | |
def _convert_index(index, pos, m=None, is_start=True): | |
"""Converts index.""" | |
if index[pos] is not None: | |
return index[pos] | |
n = len(index) | |
rear = pos | |
while rear < n - 1 and index[rear] is None: | |
rear += 1 | |
front = pos | |
while front > 0 and index[front] is None: | |
front -= 1 | |
assert index[front] is not None or index[rear] is not None | |
if index[front] is None: | |
if index[rear] >= 1: | |
if is_start: | |
return 0 | |
else: | |
return index[rear] - 1 | |
return index[rear] | |
if index[rear] is None: | |
if m is not None and index[front] < m - 1: | |
if is_start: | |
return index[front] + 1 | |
else: | |
return m - 1 | |
return index[front] | |
if is_start: | |
if index[rear] > index[front] + 1: | |
return index[front] + 1 | |
else: | |
return index[rear] | |
else: | |
if index[rear] > index[front] + 1: | |
return index[rear] - 1 | |
else: | |
return index[front] | |
def convert_examples_to_features(examples, | |
tokenizer, | |
max_seq_length, | |
doc_stride, | |
max_query_length, | |
is_training, | |
output_fn, | |
do_lower_case, | |
batch_size=None): | |
"""Loads a data file into a list of `InputBatch`s.""" | |
cnt_pos, cnt_neg = 0, 0 | |
base_id = 1000000000 | |
unique_id = base_id | |
max_n, max_m = 1024, 1024 | |
f = np.zeros((max_n, max_m), dtype=np.float32) | |
for (example_index, example) in enumerate(examples): | |
if example_index % 100 == 0: | |
logging.info("Converting %d/%d pos %d neg %d", example_index, | |
len(examples), cnt_pos, cnt_neg) | |
query_tokens = tokenization.encode_ids( | |
tokenizer.sp_model, | |
tokenization.preprocess_text( | |
example.question_text, lower=do_lower_case)) | |
if len(query_tokens) > max_query_length: | |
query_tokens = query_tokens[0:max_query_length] | |
paragraph_text = example.paragraph_text | |
para_tokens = tokenization.encode_pieces( | |
tokenizer.sp_model, | |
tokenization.preprocess_text( | |
example.paragraph_text, lower=do_lower_case)) | |
chartok_to_tok_index = [] | |
tok_start_to_chartok_index = [] | |
tok_end_to_chartok_index = [] | |
char_cnt = 0 | |
for i, token in enumerate(para_tokens): | |
new_token = token.replace(tokenization.SPIECE_UNDERLINE, " ") | |
chartok_to_tok_index.extend([i] * len(new_token)) | |
tok_start_to_chartok_index.append(char_cnt) | |
char_cnt += len(new_token) | |
tok_end_to_chartok_index.append(char_cnt - 1) | |
tok_cat_text = "".join(para_tokens).replace(tokenization.SPIECE_UNDERLINE, | |
" ") | |
n, m = len(paragraph_text), len(tok_cat_text) | |
if n > max_n or m > max_m: | |
max_n = max(n, max_n) | |
max_m = max(m, max_m) | |
f = np.zeros((max_n, max_m), dtype=np.float32) | |
g = {} | |
# pylint: disable=cell-var-from-loop | |
def _lcs_match(max_dist, n=n, m=m): | |
"""Longest-common-substring algorithm.""" | |
f.fill(0) | |
g.clear() | |
### longest common sub sequence | |
# f[i, j] = max(f[i - 1, j], f[i, j - 1], f[i - 1, j - 1] + match(i, j)) | |
for i in range(n): | |
# unlike standard LCS, this is specifically optimized for the setting | |
# because the mismatch between sentence pieces and original text will | |
# be small | |
for j in range(i - max_dist, i + max_dist): | |
if j >= m or j < 0: | |
continue | |
if i > 0: | |
g[(i, j)] = 0 | |
f[i, j] = f[i - 1, j] | |
if j > 0 and f[i, j - 1] > f[i, j]: | |
g[(i, j)] = 1 | |
f[i, j] = f[i, j - 1] | |
f_prev = f[i - 1, j - 1] if i > 0 and j > 0 else 0 | |
if (tokenization.preprocess_text( | |
paragraph_text[i], lower=do_lower_case, | |
remove_space=False) == tok_cat_text[j] and f_prev + 1 > f[i, j]): | |
g[(i, j)] = 2 | |
f[i, j] = f_prev + 1 | |
# pylint: enable=cell-var-from-loop | |
max_dist = abs(n - m) + 5 | |
for _ in range(2): | |
_lcs_match(max_dist) | |
if f[n - 1, m - 1] > 0.8 * n: | |
break | |
max_dist *= 2 | |
orig_to_chartok_index = [None] * n | |
chartok_to_orig_index = [None] * m | |
i, j = n - 1, m - 1 | |
while i >= 0 and j >= 0: | |
if (i, j) not in g: | |
break | |
if g[(i, j)] == 2: | |
orig_to_chartok_index[i] = j | |
chartok_to_orig_index[j] = i | |
i, j = i - 1, j - 1 | |
elif g[(i, j)] == 1: | |
j = j - 1 | |
else: | |
i = i - 1 | |
if (all(v is None for v in orig_to_chartok_index) or | |
f[n - 1, m - 1] < 0.8 * n): | |
logging.info("MISMATCH DETECTED!") | |
continue | |
tok_start_to_orig_index = [] | |
tok_end_to_orig_index = [] | |
for i in range(len(para_tokens)): | |
start_chartok_pos = tok_start_to_chartok_index[i] | |
end_chartok_pos = tok_end_to_chartok_index[i] | |
start_orig_pos = _convert_index( | |
chartok_to_orig_index, start_chartok_pos, n, is_start=True) | |
end_orig_pos = _convert_index( | |
chartok_to_orig_index, end_chartok_pos, n, is_start=False) | |
tok_start_to_orig_index.append(start_orig_pos) | |
tok_end_to_orig_index.append(end_orig_pos) | |
if not is_training: | |
tok_start_position = tok_end_position = None | |
if is_training and example.is_impossible: | |
tok_start_position = 0 | |
tok_end_position = 0 | |
if is_training and not example.is_impossible: | |
start_position = example.start_position | |
end_position = start_position + len(example.orig_answer_text) - 1 | |
start_chartok_pos = _convert_index( | |
orig_to_chartok_index, start_position, is_start=True) | |
tok_start_position = chartok_to_tok_index[start_chartok_pos] | |
end_chartok_pos = _convert_index( | |
orig_to_chartok_index, end_position, is_start=False) | |
tok_end_position = chartok_to_tok_index[end_chartok_pos] | |
assert tok_start_position <= tok_end_position | |
def _piece_to_id(x): | |
return tokenizer.sp_model.PieceToId(x) | |
all_doc_tokens = list(map(_piece_to_id, para_tokens)) | |
# The -3 accounts for [CLS], [SEP] and [SEP] | |
max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 | |
# We can have documents that are longer than the maximum sequence length. | |
# To deal with this we do a sliding window approach, where we take chunks | |
# of the up to our max length with a stride of `doc_stride`. | |
_DocSpan = collections.namedtuple( # pylint: disable=invalid-name | |
"DocSpan", ["start", "length"]) | |
doc_spans = [] | |
start_offset = 0 | |
while start_offset < len(all_doc_tokens): | |
length = len(all_doc_tokens) - start_offset | |
if length > max_tokens_for_doc: | |
length = max_tokens_for_doc | |
doc_spans.append(_DocSpan(start=start_offset, length=length)) | |
if start_offset + length == len(all_doc_tokens): | |
break | |
start_offset += min(length, doc_stride) | |
for (doc_span_index, doc_span) in enumerate(doc_spans): | |
tokens = [] | |
token_is_max_context = {} | |
segment_ids = [] | |
cur_tok_start_to_orig_index = [] | |
cur_tok_end_to_orig_index = [] | |
tokens.append(tokenizer.sp_model.PieceToId("[CLS]")) | |
segment_ids.append(0) | |
for token in query_tokens: | |
tokens.append(token) | |
segment_ids.append(0) | |
tokens.append(tokenizer.sp_model.PieceToId("[SEP]")) | |
segment_ids.append(0) | |
for i in range(doc_span.length): | |
split_token_index = doc_span.start + i | |
cur_tok_start_to_orig_index.append( | |
tok_start_to_orig_index[split_token_index]) | |
cur_tok_end_to_orig_index.append( | |
tok_end_to_orig_index[split_token_index]) | |
is_max_context = _check_is_max_context(doc_spans, doc_span_index, | |
split_token_index) | |
token_is_max_context[len(tokens)] = is_max_context | |
tokens.append(all_doc_tokens[split_token_index]) | |
segment_ids.append(1) | |
tokens.append(tokenizer.sp_model.PieceToId("[SEP]")) | |
segment_ids.append(1) | |
paragraph_len = len(tokens) | |
input_ids = tokens | |
# The mask has 1 for real tokens and 0 for padding tokens. Only real | |
# tokens are attended to. | |
input_mask = [1] * len(input_ids) | |
# Zero-pad up to the sequence length. | |
while len(input_ids) < max_seq_length: | |
input_ids.append(0) | |
input_mask.append(0) | |
segment_ids.append(0) | |
assert len(input_ids) == max_seq_length | |
assert len(input_mask) == max_seq_length | |
assert len(segment_ids) == max_seq_length | |
span_is_impossible = example.is_impossible | |
start_position = None | |
end_position = None | |
if is_training and not span_is_impossible: | |
# For training, if our document chunk does not contain an annotation | |
# we throw it out, since there is nothing to predict. | |
doc_start = doc_span.start | |
doc_end = doc_span.start + doc_span.length - 1 | |
out_of_span = False | |
if not (tok_start_position >= doc_start and | |
tok_end_position <= doc_end): | |
out_of_span = True | |
if out_of_span: | |
# continue | |
start_position = 0 | |
end_position = 0 | |
span_is_impossible = True | |
else: | |
doc_offset = len(query_tokens) + 2 | |
start_position = tok_start_position - doc_start + doc_offset | |
end_position = tok_end_position - doc_start + doc_offset | |
if is_training and span_is_impossible: | |
start_position = 0 | |
end_position = 0 | |
if example_index < 20: | |
logging.info("*** Example ***") | |
logging.info("unique_id: %s", (unique_id)) | |
logging.info("example_index: %s", (example_index)) | |
logging.info("doc_span_index: %s", (doc_span_index)) | |
logging.info("tok_start_to_orig_index: %s", | |
" ".join([str(x) for x in cur_tok_start_to_orig_index])) | |
logging.info("tok_end_to_orig_index: %s", | |
" ".join([str(x) for x in cur_tok_end_to_orig_index])) | |
logging.info( | |
"token_is_max_context: %s", " ".join( | |
["%d:%s" % (x, y) for (x, y) in token_is_max_context.items()])) | |
logging.info( | |
"input_pieces: %s", | |
" ".join([tokenizer.sp_model.IdToPiece(x) for x in tokens])) | |
logging.info("input_ids: %s", " ".join([str(x) for x in input_ids])) | |
logging.info("input_mask: %s", " ".join([str(x) for x in input_mask])) | |
logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids])) | |
if is_training and span_is_impossible: | |
logging.info("impossible example span") | |
if is_training and not span_is_impossible: | |
pieces = [ | |
tokenizer.sp_model.IdToPiece(token) | |
for token in tokens[start_position:(end_position + 1)] | |
] | |
answer_text = tokenizer.sp_model.DecodePieces(pieces) | |
logging.info("start_position: %d", (start_position)) | |
logging.info("end_position: %d", (end_position)) | |
logging.info("answer: %s", (tokenization.printable_text(answer_text))) | |
# With multi processing, the example_index is actually the index | |
# within the current process therefore we use example_index=None | |
# to avoid being used in the future. | |
# The current code does not use example_index of training data. | |
if is_training: | |
feat_example_index = None | |
else: | |
feat_example_index = example_index | |
feature = InputFeatures( | |
unique_id=unique_id, | |
example_index=feat_example_index, | |
doc_span_index=doc_span_index, | |
tok_start_to_orig_index=cur_tok_start_to_orig_index, | |
tok_end_to_orig_index=cur_tok_end_to_orig_index, | |
token_is_max_context=token_is_max_context, | |
tokens=[tokenizer.sp_model.IdToPiece(x) for x in tokens], | |
input_ids=input_ids, | |
input_mask=input_mask, | |
segment_ids=segment_ids, | |
paragraph_len=paragraph_len, | |
start_position=start_position, | |
end_position=end_position, | |
is_impossible=span_is_impossible) | |
# Run callback | |
if is_training: | |
output_fn(feature) | |
else: | |
output_fn(feature, is_padding=False) | |
unique_id += 1 | |
if span_is_impossible: | |
cnt_neg += 1 | |
else: | |
cnt_pos += 1 | |
if not is_training and feature: | |
assert batch_size | |
num_padding = 0 | |
num_examples = unique_id - base_id | |
if unique_id % batch_size != 0: | |
num_padding = batch_size - (num_examples % batch_size) | |
dummy_feature = copy.deepcopy(feature) | |
for _ in range(num_padding): | |
dummy_feature.unique_id = unique_id | |
# Run callback | |
output_fn(feature, is_padding=True) | |
unique_id += 1 | |
logging.info("Total number of instances: %d = pos %d neg %d", | |
cnt_pos + cnt_neg, cnt_pos, cnt_neg) | |
return unique_id - base_id | |
def _check_is_max_context(doc_spans, cur_span_index, position): | |
"""Check if this is the 'max context' doc span for the token.""" | |
# Because of the sliding window approach taken to scoring documents, a single | |
# token can appear in multiple documents. E.g. | |
# Doc: the man went to the store and bought a gallon of milk | |
# Span A: the man went to the | |
# Span B: to the store and bought | |
# Span C: and bought a gallon of | |
# ... | |
# | |
# Now the word 'bought' will have two scores from spans B and C. We only | |
# want to consider the score with "maximum context", which we define as | |
# the *minimum* of its left and right context (the *sum* of left and | |
# right context will always be the same, of course). | |
# | |
# In the example the maximum context for 'bought' would be span C since | |
# it has 1 left context and 3 right context, while span B has 4 left context | |
# and 0 right context. | |
best_score = None | |
best_span_index = None | |
for (span_index, doc_span) in enumerate(doc_spans): | |
end = doc_span.start + doc_span.length - 1 | |
if position < doc_span.start: | |
continue | |
if position > end: | |
continue | |
num_left_context = position - doc_span.start | |
num_right_context = end - position | |
score = min(num_left_context, num_right_context) + 0.01 * doc_span.length | |
if best_score is None or score > best_score: | |
best_score = score | |
best_span_index = span_index | |
return cur_span_index == best_span_index | |
def write_predictions(all_examples, | |
all_features, | |
all_results, | |
n_best_size, | |
max_answer_length, | |
do_lower_case, | |
output_prediction_file, | |
output_nbest_file, | |
output_null_log_odds_file, | |
version_2_with_negative=False, | |
null_score_diff_threshold=0.0, | |
verbose=False): | |
"""Write final predictions to the json file and log-odds of null if needed.""" | |
logging.info("Writing predictions to: %s", (output_prediction_file)) | |
logging.info("Writing nbest to: %s", (output_nbest_file)) | |
all_predictions, all_nbest_json, scores_diff_json = ( | |
postprocess_output(all_examples=all_examples, | |
all_features=all_features, | |
all_results=all_results, | |
n_best_size=n_best_size, | |
max_answer_length=max_answer_length, | |
do_lower_case=do_lower_case, | |
version_2_with_negative=version_2_with_negative, | |
null_score_diff_threshold=null_score_diff_threshold, | |
verbose=verbose)) | |
write_to_json_files(all_predictions, output_prediction_file) | |
write_to_json_files(all_nbest_json, output_nbest_file) | |
if version_2_with_negative: | |
write_to_json_files(scores_diff_json, output_null_log_odds_file) | |
def postprocess_output(all_examples, | |
all_features, | |
all_results, | |
n_best_size, | |
max_answer_length, | |
do_lower_case, | |
version_2_with_negative=False, | |
null_score_diff_threshold=0.0, | |
verbose=False): | |
"""Postprocess model output, to form predicton results.""" | |
del do_lower_case, verbose | |
example_index_to_features = collections.defaultdict(list) | |
for feature in all_features: | |
example_index_to_features[feature.example_index].append(feature) | |
unique_id_to_result = {} | |
for result in all_results: | |
unique_id_to_result[result.unique_id] = result | |
_PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name | |
"PrelimPrediction", | |
["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) | |
all_predictions = collections.OrderedDict() | |
all_nbest_json = collections.OrderedDict() | |
scores_diff_json = collections.OrderedDict() | |
for (example_index, example) in enumerate(all_examples): | |
features = example_index_to_features[example_index] | |
prelim_predictions = [] | |
# keep track of the minimum score of null start+end of position 0 | |
score_null = 1000000 # large and positive | |
min_null_feature_index = 0 # the paragraph slice with min mull score | |
null_start_logit = 0 # the start logit at the slice with min null score | |
null_end_logit = 0 # the end logit at the slice with min null score | |
for (feature_index, feature) in enumerate(features): | |
result = unique_id_to_result[feature.unique_id] | |
start_indexes = _get_best_indexes(result.start_logits, n_best_size) | |
end_indexes = _get_best_indexes(result.end_logits, n_best_size) | |
# if we could have irrelevant answers, get the min score of irrelevant | |
if version_2_with_negative: | |
feature_null_score = result.start_logits[0] + result.end_logits[0] | |
if feature_null_score < score_null: | |
score_null = feature_null_score | |
min_null_feature_index = feature_index | |
null_start_logit = result.start_logits[0] | |
null_end_logit = result.end_logits[0] | |
for start_index in start_indexes: | |
for end_index in end_indexes: | |
doc_offset = feature.tokens.index("[SEP]") + 1 | |
# We could hypothetically create invalid predictions, e.g., predict | |
# that the start of the span is in the question. We throw out all | |
# invalid predictions. | |
if start_index - doc_offset >= len(feature.tok_start_to_orig_index): | |
continue | |
if end_index - doc_offset >= len(feature.tok_end_to_orig_index): | |
continue | |
# if start_index not in feature.tok_start_to_orig_index: | |
# continue | |
# if end_index not in feature.tok_end_to_orig_index: | |
# continue | |
if not feature.token_is_max_context.get(start_index, False): | |
continue | |
if end_index < start_index: | |
continue | |
length = end_index - start_index + 1 | |
if length > max_answer_length: | |
continue | |
prelim_predictions.append( | |
_PrelimPrediction( | |
feature_index=feature_index, | |
start_index=start_index - doc_offset, | |
end_index=end_index - doc_offset, | |
start_logit=result.start_logits[start_index], | |
end_logit=result.end_logits[end_index])) | |
if version_2_with_negative: | |
prelim_predictions.append( | |
_PrelimPrediction( | |
feature_index=min_null_feature_index, | |
start_index=-1, | |
end_index=-1, | |
start_logit=null_start_logit, | |
end_logit=null_end_logit)) | |
prelim_predictions = sorted( | |
prelim_predictions, | |
key=lambda x: (x.start_logit + x.end_logit), | |
reverse=True) | |
_NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name | |
"NbestPrediction", ["text", "start_logit", "end_logit"]) | |
seen_predictions = {} | |
nbest = [] | |
for pred in prelim_predictions: | |
if len(nbest) >= n_best_size: | |
break | |
feature = features[pred.feature_index] | |
if pred.start_index >= 0: # this is a non-null prediction | |
tok_start_to_orig_index = feature.tok_start_to_orig_index | |
tok_end_to_orig_index = feature.tok_end_to_orig_index | |
start_orig_pos = tok_start_to_orig_index[pred.start_index] | |
end_orig_pos = tok_end_to_orig_index[pred.end_index] | |
paragraph_text = example.paragraph_text | |
final_text = paragraph_text[start_orig_pos:end_orig_pos + 1].strip() | |
if final_text in seen_predictions: | |
continue | |
seen_predictions[final_text] = True | |
else: | |
final_text = "" | |
seen_predictions[final_text] = True | |
nbest.append( | |
_NbestPrediction( | |
text=final_text, | |
start_logit=pred.start_logit, | |
end_logit=pred.end_logit)) | |
# if we didn't inlude the empty option in the n-best, inlcude it | |
if version_2_with_negative: | |
if "" not in seen_predictions: | |
nbest.append( | |
_NbestPrediction( | |
text="", start_logit=null_start_logit, | |
end_logit=null_end_logit)) | |
# In very rare edge cases we could have no valid predictions. So we | |
# just create a nonce prediction in this case to avoid failure. | |
if not nbest: | |
nbest.append( | |
_NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) | |
assert len(nbest) >= 1 | |
total_scores = [] | |
best_non_null_entry = None | |
for entry in nbest: | |
total_scores.append(entry.start_logit + entry.end_logit) | |
if not best_non_null_entry: | |
if entry.text: | |
best_non_null_entry = entry | |
probs = _compute_softmax(total_scores) | |
nbest_json = [] | |
for (i, entry) in enumerate(nbest): | |
output = collections.OrderedDict() | |
output["text"] = entry.text | |
output["probability"] = probs[i] | |
output["start_logit"] = entry.start_logit | |
output["end_logit"] = entry.end_logit | |
nbest_json.append(output) | |
assert len(nbest_json) >= 1 | |
if not version_2_with_negative: | |
all_predictions[example.qas_id] = nbest_json[0]["text"] | |
else: | |
assert best_non_null_entry is not None | |
# predict "" iff the null score - the score of best non-null > threshold | |
score_diff = score_null - best_non_null_entry.start_logit - ( | |
best_non_null_entry.end_logit) | |
scores_diff_json[example.qas_id] = score_diff | |
if score_diff > null_score_diff_threshold: | |
all_predictions[example.qas_id] = "" | |
else: | |
all_predictions[example.qas_id] = best_non_null_entry.text | |
all_nbest_json[example.qas_id] = nbest_json | |
return all_predictions, all_nbest_json, scores_diff_json | |
def write_to_json_files(json_records, json_file): | |
with tf.io.gfile.GFile(json_file, "w") as writer: | |
writer.write(json.dumps(json_records, indent=4) + "\n") | |
def _get_best_indexes(logits, n_best_size): | |
"""Get the n-best logits from a list.""" | |
index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) | |
best_indexes = [] | |
for i in range(len(index_and_score)): | |
if i >= n_best_size: | |
break | |
best_indexes.append(index_and_score[i][0]) | |
return best_indexes | |
def _compute_softmax(scores): | |
"""Compute softmax probability over raw logits.""" | |
if not scores: | |
return [] | |
max_score = None | |
for score in scores: | |
if max_score is None or score > max_score: | |
max_score = score | |
exp_scores = [] | |
total_sum = 0.0 | |
for score in scores: | |
x = math.exp(score - max_score) | |
exp_scores.append(x) | |
total_sum += x | |
probs = [] | |
for score in exp_scores: | |
probs.append(score / total_sum) | |
return probs | |
class FeatureWriter(object): | |
"""Writes InputFeature to TF example file.""" | |
def __init__(self, filename, is_training): | |
self.filename = filename | |
self.is_training = is_training | |
self.num_features = 0 | |
tf.io.gfile.makedirs(os.path.dirname(filename)) | |
self._writer = tf.io.TFRecordWriter(filename) | |
def process_feature(self, feature): | |
"""Write a InputFeature to the TFRecordWriter as a tf.train.Example.""" | |
self.num_features += 1 | |
def create_int_feature(values): | |
feature = tf.train.Feature( | |
int64_list=tf.train.Int64List(value=list(values))) | |
return feature | |
features = collections.OrderedDict() | |
features["unique_ids"] = create_int_feature([feature.unique_id]) | |
features["input_ids"] = create_int_feature(feature.input_ids) | |
features["input_mask"] = create_int_feature(feature.input_mask) | |
features["segment_ids"] = create_int_feature(feature.segment_ids) | |
if self.is_training: | |
features["start_positions"] = create_int_feature([feature.start_position]) | |
features["end_positions"] = create_int_feature([feature.end_position]) | |
impossible = 0 | |
if feature.is_impossible: | |
impossible = 1 | |
features["is_impossible"] = create_int_feature([impossible]) | |
tf_example = tf.train.Example(features=tf.train.Features(feature=features)) | |
self._writer.write(tf_example.SerializeToString()) | |
def close(self): | |
self._writer.close() | |
def generate_tf_record_from_json_file(input_file_path, | |
sp_model_file, | |
output_path, | |
max_seq_length=384, | |
do_lower_case=True, | |
max_query_length=64, | |
doc_stride=128, | |
version_2_with_negative=False): | |
"""Generates and saves training data into a tf record file.""" | |
train_examples = read_squad_examples( | |
input_file=input_file_path, | |
is_training=True, | |
version_2_with_negative=version_2_with_negative) | |
tokenizer = tokenization.FullSentencePieceTokenizer( | |
sp_model_file=sp_model_file) | |
train_writer = FeatureWriter(filename=output_path, is_training=True) | |
number_of_examples = convert_examples_to_features( | |
examples=train_examples, | |
tokenizer=tokenizer, | |
max_seq_length=max_seq_length, | |
doc_stride=doc_stride, | |
max_query_length=max_query_length, | |
is_training=True, | |
output_fn=train_writer.process_feature, | |
do_lower_case=do_lower_case) | |
train_writer.close() | |
meta_data = { | |
"task_type": "bert_squad", | |
"train_data_size": number_of_examples, | |
"max_seq_length": max_seq_length, | |
"max_query_length": max_query_length, | |
"doc_stride": doc_stride, | |
"version_2_with_negative": version_2_with_negative, | |
} | |
return meta_data | |