NCTC / models /official /nlp /modeling /networks /span_labeling_test.py
NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
7.48 kB
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for span_labeling network."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from tensorflow.python.keras import keras_parameterized # pylint: disable=g-direct-tensorflow-import
from official.nlp.modeling.networks import span_labeling
# This decorator runs the test in V1, V2-Eager, and V2-Functional mode. It
# guarantees forward compatibility of this code for the V2 switchover.
@keras_parameterized.run_all_keras_modes
class SpanLabelingTest(keras_parameterized.TestCase):
def test_network_creation(self):
"""Validate that the Keras object can be created."""
sequence_length = 15
input_width = 512
test_network = span_labeling.SpanLabeling(
input_width=input_width, output='predictions')
# Create a 3-dimensional input (the first dimension is implicit).
sequence_data = tf.keras.Input(
shape=(sequence_length, input_width), dtype=tf.float32)
start_outputs, end_outputs = test_network(sequence_data)
# Validate that the outputs are of the expected shape.
expected_output_shape = [None, sequence_length]
self.assertEqual(expected_output_shape, start_outputs.shape.as_list())
self.assertEqual(expected_output_shape, end_outputs.shape.as_list())
def test_network_invocation(self):
"""Validate that the Keras object can be invoked."""
sequence_length = 15
input_width = 512
test_network = span_labeling.SpanLabeling(input_width=input_width)
# Create a 3-dimensional input (the first dimension is implicit).
sequence_data = tf.keras.Input(
shape=(sequence_length, input_width), dtype=tf.float32)
outputs = test_network(sequence_data)
model = tf.keras.Model(sequence_data, outputs)
# Invoke the network as part of a Model.
batch_size = 3
input_data = 10 * np.random.random_sample(
(batch_size, sequence_length, input_width))
start_outputs, end_outputs = model.predict(input_data)
# Validate that the outputs are of the expected shape.
expected_output_shape = (batch_size, sequence_length)
self.assertEqual(expected_output_shape, start_outputs.shape)
self.assertEqual(expected_output_shape, end_outputs.shape)
def test_network_invocation_with_internal_logit_output(self):
"""Validate that the logit outputs are correct."""
sequence_length = 15
input_width = 512
test_network = span_labeling.SpanLabeling(
input_width=input_width, output='predictions')
# Create a 3-dimensional input (the first dimension is implicit).
sequence_data = tf.keras.Input(
shape=(sequence_length, input_width), dtype=tf.float32)
output = test_network(sequence_data)
model = tf.keras.Model(sequence_data, output)
logit_model = tf.keras.Model(
test_network.inputs,
[test_network.start_logits, test_network.end_logits])
batch_size = 3
input_data = 10 * np.random.random_sample(
(batch_size, sequence_length, input_width))
start_outputs, end_outputs = model.predict(input_data)
start_logits, end_logits = logit_model.predict(input_data)
# Ensure that the tensor shapes are correct.
expected_output_shape = (batch_size, sequence_length)
self.assertEqual(expected_output_shape, start_outputs.shape)
self.assertEqual(expected_output_shape, end_outputs.shape)
self.assertEqual(expected_output_shape, start_logits.shape)
self.assertEqual(expected_output_shape, end_logits.shape)
# Ensure that the logits, when softmaxed, create the outputs.
input_tensor = tf.keras.Input(expected_output_shape[1:])
output_tensor = tf.keras.layers.Activation(tf.nn.log_softmax)(input_tensor)
softmax_model = tf.keras.Model(input_tensor, output_tensor)
start_softmax = softmax_model.predict(start_logits)
self.assertAllClose(start_outputs, start_softmax)
end_softmax = softmax_model.predict(end_logits)
self.assertAllClose(end_outputs, end_softmax)
def test_network_invocation_with_external_logit_output(self):
"""Validate that the logit outputs are correct."""
sequence_length = 15
input_width = 512
test_network = span_labeling.SpanLabeling(
input_width=input_width, output='predictions')
logit_network = span_labeling.SpanLabeling(
input_width=input_width, output='logits')
logit_network.set_weights(test_network.get_weights())
# Create a 3-dimensional input (the first dimension is implicit).
sequence_data = tf.keras.Input(
shape=(sequence_length, input_width), dtype=tf.float32)
output = test_network(sequence_data)
logit_output = logit_network(sequence_data)
model = tf.keras.Model(sequence_data, output)
logit_model = tf.keras.Model(sequence_data, logit_output)
batch_size = 3
input_data = 10 * np.random.random_sample(
(batch_size, sequence_length, input_width))
start_outputs, end_outputs = model.predict(input_data)
start_logits, end_logits = logit_model.predict(input_data)
# Ensure that the tensor shapes are correct.
expected_output_shape = (batch_size, sequence_length)
self.assertEqual(expected_output_shape, start_outputs.shape)
self.assertEqual(expected_output_shape, end_outputs.shape)
self.assertEqual(expected_output_shape, start_logits.shape)
self.assertEqual(expected_output_shape, end_logits.shape)
# Ensure that the logits, when softmaxed, create the outputs.
input_tensor = tf.keras.Input(expected_output_shape[1:])
output_tensor = tf.keras.layers.Activation(tf.nn.log_softmax)(input_tensor)
softmax_model = tf.keras.Model(input_tensor, output_tensor)
start_softmax = softmax_model.predict(start_logits)
self.assertAllClose(start_outputs, start_softmax)
end_softmax = softmax_model.predict(end_logits)
self.assertAllClose(end_outputs, end_softmax)
def test_serialize_deserialize(self):
# Create a network object that sets all of its config options.
network = span_labeling.SpanLabeling(
input_width=128,
activation='relu',
initializer='zeros',
output='predictions')
# Create another network object from the first object's config.
new_network = span_labeling.SpanLabeling.from_config(network.get_config())
# Validate that the config can be forced to JSON.
_ = new_network.to_json()
# If the serialization was successful, the new config should match the old.
self.assertAllEqual(network.get_config(), new_network.get_config())
def test_unknown_output_type_fails(self):
with self.assertRaisesRegex(ValueError, 'Unknown `output` value "bad".*'):
_ = span_labeling.SpanLabeling(input_width=10, output='bad')
if __name__ == '__main__':
tf.test.main()