Spaces:
Sleeping
Sleeping
# Copyright 2018 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
# | |
# This script is used to run local training on DAVIS 2017. Users could also | |
# modify from this script for their use case. See eval.sh for an example of | |
# local inference with a pre-trained model. | |
# | |
# Note that this script runs local training with a single GPU and a smaller crop | |
# and batch size, while in the paper, we trained our models with 16 GPUS with | |
# --num_clones=2, --train_batch_size=6, --num_replicas=8, | |
# --training_number_of_steps=200000, --train_crop_size=465, | |
# --train_crop_size=465. | |
# | |
# Usage: | |
# # From the tensorflow/models/research/feelvos directory. | |
# sh ./train.sh | |
# | |
# | |
# Exit immediately if a command exits with a non-zero status. | |
set -e | |
# Move one-level up to tensorflow/models/research directory. | |
cd .. | |
# Update PYTHONPATH. | |
export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim:`pwd`/feelvos | |
# Set up the working environment. | |
CURRENT_DIR=$(pwd) | |
WORK_DIR="${CURRENT_DIR}/feelvos" | |
# Set up the working directories. | |
DATASET_DIR="datasets" | |
DAVIS_FOLDER="davis17" | |
DAVIS_DATASET="${WORK_DIR}/${DATASET_DIR}/${DAVIS_FOLDER}/tfrecord" | |
EXP_FOLDER="exp/train" | |
TRAIN_LOGDIR="${WORK_DIR}/${DATASET_DIR}/${DAVIS_FOLDER}/${EXP_FOLDER}/train" | |
mkdir -p ${TRAIN_LOGDIR} | |
# Go to datasets folder and download and convert the DAVIS 2017 dataset. | |
DATASET_DIR="datasets" | |
cd "${WORK_DIR}/${DATASET_DIR}" | |
sh download_and_convert_davis17.sh | |
# Go to models folder and download and unpack the COCO pre-trained model. | |
MODELS_DIR="models" | |
mkdir -p "${WORK_DIR}/${MODELS_DIR}" | |
cd "${WORK_DIR}/${MODELS_DIR}" | |
if [ ! -d "xception_65_coco_pretrained" ]; then | |
wget http://download.tensorflow.org/models/xception_65_coco_pretrained_2018_10_02.tar.gz | |
tar -xvf xception_65_coco_pretrained_2018_10_02.tar.gz | |
rm xception_65_coco_pretrained_2018_10_02.tar.gz | |
fi | |
INIT_CKPT="${WORK_DIR}/${MODELS_DIR}/xception_65_coco_pretrained/x65-b2u1s2p-d48-2-3x256-sc-cr300k_init.ckpt" | |
# Go back to orignal directory. | |
cd "${CURRENT_DIR}" | |
python "${WORK_DIR}"/train.py \ | |
--dataset=davis_2017 \ | |
--dataset_dir="${DAVIS_DATASET}" \ | |
--train_logdir="${TRAIN_LOGDIR}" \ | |
--tf_initial_checkpoint="${INIT_CKPT}" \ | |
--logtostderr \ | |
--atrous_rates=6 \ | |
--atrous_rates=12 \ | |
--atrous_rates=18 \ | |
--decoder_output_stride=4 \ | |
--model_variant=xception_65 \ | |
--multi_grid=1 \ | |
--multi_grid=1 \ | |
--multi_grid=1 \ | |
--output_stride=16 \ | |
--weight_decay=0.00004 \ | |
--num_clones=1 \ | |
--train_batch_size=1 \ | |
--train_crop_size=300 \ | |
--train_crop_size=300 | |