Spaces:
Sleeping
Sleeping
# Copyright 2018 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests for embedding utils.""" | |
import unittest | |
import numpy as np | |
import tensorflow as tf | |
from feelvos.utils import embedding_utils | |
if embedding_utils.USE_CORRELATION_COST: | |
# pylint: disable=g-import-not-at-top | |
from correlation_cost.python.ops import correlation_cost_op | |
class EmbeddingUtilsTest(tf.test.TestCase): | |
def test_pairwise_distances(self): | |
x = np.arange(100, dtype=np.float32).reshape(20, 5) | |
y = np.arange(100, 200, dtype=np.float32).reshape(20, 5) | |
g = tf.Graph() | |
with g.as_default(): | |
with self.test_session(graph=g) as sess: | |
x = tf.constant(x) | |
y = tf.constant(y) | |
d1 = embedding_utils.pairwise_distances(x, y) | |
d2 = embedding_utils.pairwise_distances2(x, y) | |
d1_val, d2_val = sess.run([d1, d2]) | |
self.assertAllClose(d1_val, d2_val) | |
def test_correlation_cost_one_dimensional(self): | |
a = np.array([[[[1.0], [2.0]], [[3.0], [4.0]]]]) | |
b = np.array([[[[2.0], [1.0]], [[4.0], [3.0]]]]) | |
g = tf.Graph() | |
with g.as_default(): | |
with self.test_session(graph=g) as sess: | |
c = correlation_cost_op.correlation_cost( | |
a, b, kernel_size=1, max_displacement=1, stride_1=1, stride_2=1, | |
pad=1) | |
c = tf.squeeze(c, axis=0) | |
c_val = sess.run(c) | |
self.assertAllEqual(c_val.shape, (2, 2, 9)) | |
for y in range(2): | |
for x in range(2): | |
for dy in range(-1, 2): | |
for dx in range(-1, 2): | |
a_slice = a[0, y, x, 0] | |
if y + dy < 0 or y + dy > 1 or x + dx < 0 or x + dx > 1: | |
b_slice = 0 | |
else: | |
b_slice = b[0, y + dy, x + dx, 0] | |
expected = a_slice * b_slice | |
dy0 = dy + 1 | |
dx0 = dx + 1 | |
self.assertAlmostEqual(c_val[y, x, 3 * dy0 + dx0], expected) | |
def test_correlation_cost_two_dimensional(self): | |
a = np.array([[[[1.0, -5.0], [7.0, 2.0]], [[1.0, 3.0], [3.0, 4.0]]]]) | |
b = np.array([[[[2.0, 1.0], [0.0, -9.0]], [[4.0, 3.0], [3.0, 1.0]]]]) | |
g = tf.Graph() | |
with g.as_default(): | |
with self.test_session(graph=g) as sess: | |
c = correlation_cost_op.correlation_cost( | |
a, b, kernel_size=1, max_displacement=1, stride_1=1, stride_2=1, | |
pad=1) | |
c = tf.squeeze(c, axis=0) | |
c_val = sess.run(c) | |
self.assertAllEqual(c_val.shape, (2, 2, 9)) | |
for y in range(2): | |
for x in range(2): | |
for dy in range(-1, 2): | |
for dx in range(-1, 2): | |
a_slice = a[0, y, x, :] | |
if y + dy < 0 or y + dy > 1 or x + dx < 0 or x + dx > 1: | |
b_slice = 0 | |
else: | |
b_slice = b[0, y + dy, x + dx, :] | |
expected = (a_slice * b_slice).mean() | |
dy0 = dy + 1 | |
dx0 = dx + 1 | |
self.assertAlmostEqual(c_val[y, x, 3 * dy0 + dx0], expected) | |
def test_local_pairwise_distances_one_dimensional(self): | |
a = np.array([[[1.0], [2.0]], [[3.0], [4.0]]]) | |
b = np.array([[[2.0], [1.0]], [[4.0], [3.0]]]) | |
g = tf.Graph() | |
with g.as_default(): | |
with self.test_session(graph=g) as sess: | |
a_tf = tf.constant(a, dtype=tf.float32) | |
b_tf = tf.constant(b, dtype=tf.float32) | |
d = embedding_utils.local_pairwise_distances(a_tf, b_tf, | |
max_distance=1) | |
d_val = sess.run(d) | |
for y in range(2): | |
for x in range(2): | |
for dy in range(-1, 2): | |
for dx in range(-1, 2): | |
a_slice = a[y, x, 0] | |
if y + dy < 0 or y + dy > 1 or x + dx < 0 or x + dx > 1: | |
expected = np.float('inf') | |
else: | |
b_slice = b[y + dy, x + dx, 0] | |
expected = (a_slice - b_slice) ** 2 | |
dy0 = dy + 1 | |
dx0 = dx + 1 | |
self.assertAlmostEqual(d_val[y, x, 3 * dy0 + dx0], expected) | |
def test_local_pairwise_distances_shape(self): | |
a = np.zeros((4, 5, 2)) | |
b = np.zeros((4, 5, 2)) | |
g = tf.Graph() | |
with g.as_default(): | |
with self.test_session(graph=g) as sess: | |
a_tf = tf.constant(a, dtype=tf.float32) | |
b_tf = tf.constant(b, dtype=tf.float32) | |
d = embedding_utils.local_pairwise_distances(a_tf, b_tf, max_distance=4) | |
d_val = sess.run(d) | |
self.assertAllEqual(d_val.shape, (4, 5, 81)) | |
def test_local_pairwise_distances_two_dimensional(self): | |
a = np.array([[[1.0, -5.0], [7.0, 2.0]], [[1.0, 3.0], [3.0, 4.0]]]) | |
b = np.array([[[2.0, 1.0], [0.0, -9.0]], [[4.0, 3.0], [3.0, 1.0]]]) | |
g = tf.Graph() | |
with g.as_default(): | |
with self.test_session(graph=g) as sess: | |
a_tf = tf.constant(a, dtype=tf.float32) | |
b_tf = tf.constant(b, dtype=tf.float32) | |
d = embedding_utils.local_pairwise_distances(a_tf, b_tf, | |
max_distance=1) | |
d_val = sess.run(d) | |
for y in range(2): | |
for x in range(2): | |
for dy in range(-1, 2): | |
for dx in range(-1, 2): | |
a_slice = a[y, x, :] | |
if y + dy < 0 or y + dy > 1 or x + dx < 0 or x + dx > 1: | |
expected = np.float('inf') | |
else: | |
b_slice = b[y + dy, x + dx, :] | |
expected = ((a_slice - b_slice) ** 2).sum() | |
dy0 = dy + 1 | |
dx0 = dx + 1 | |
self.assertAlmostEqual(d_val[y, x, 3 * dy0 + dx0], expected) | |
def test_local_previous_frame_nearest_neighbor_features_per_object(self): | |
prev_frame_embedding = np.array([[[1.0, -5.0], [7.0, 2.0]], | |
[[1.0, 3.0], [3.0, 4.0]]]) / 10 | |
query_embedding = np.array([[[2.0, 1.0], [0.0, -9.0]], | |
[[4.0, 3.0], [3.0, 1.0]]]) / 10 | |
prev_frame_labels = np.array([[[0], [1]], [[1], [0]]]) | |
gt_ids = np.array([0, 1]) | |
g = tf.Graph() | |
with g.as_default(): | |
with self.test_session(graph=g) as sess: | |
prev_frame_embedding_tf = tf.constant(prev_frame_embedding, | |
dtype=tf.float32) | |
query_embedding_tf = tf.constant(query_embedding, dtype=tf.float32) | |
embu = embedding_utils | |
dists = ( | |
embu.local_previous_frame_nearest_neighbor_features_per_object( | |
prev_frame_embedding_tf, query_embedding_tf, | |
prev_frame_labels, gt_ids, max_distance=1)) | |
dists = tf.squeeze(dists, axis=4) | |
dists = tf.squeeze(dists, axis=0) | |
dists_val = sess.run(dists) | |
for obj_id in gt_ids: | |
for y in range(2): | |
for x in range(2): | |
curr_min = 1.0 | |
for dy in range(-1, 2): | |
for dx in range(-1, 2): | |
# Attention: here we shift the prev frame embedding, | |
# not the query. | |
if y + dy < 0 or y + dy > 1 or x + dx < 0 or x + dx > 1: | |
continue | |
if prev_frame_labels[y + dy, x + dx, 0] != obj_id: | |
continue | |
prev_frame_slice = prev_frame_embedding[y + dy, x + dx, :] | |
query_frame_slice = query_embedding[y, x, :] | |
v_unnorm = ((prev_frame_slice - query_frame_slice) ** 2).sum() | |
v = ((1.0 / (1.0 + np.exp(-v_unnorm))) - 0.5) * 2 | |
curr_min = min(curr_min, v) | |
expected = curr_min | |
self.assertAlmostEqual(dists_val[y, x, obj_id], expected, | |
places=5) | |
if __name__ == '__main__': | |
tf.test.main() | |