Spaces:
Sleeping
Sleeping
# Copyright 2017 Google Inc. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# ============================================================================== | |
import numpy as np | |
import tensorflow as tf | |
from utils import linear, log_sum_exp | |
class Poisson(object): | |
"""Poisson distributon | |
Computes the log probability under the model. | |
""" | |
def __init__(self, log_rates): | |
""" Create Poisson distributions with log_rates parameters. | |
Args: | |
log_rates: a tensor-like list of log rates underlying the Poisson dist. | |
""" | |
self.logr = log_rates | |
def logp(self, bin_counts): | |
"""Compute the log probability for the counts in the bin, under the model. | |
Args: | |
bin_counts: array-like integer counts | |
Returns: | |
The log-probability under the Poisson models for each element of | |
bin_counts. | |
""" | |
k = tf.to_float(bin_counts) | |
# log poisson(k, r) = log(r^k * e^(-r) / k!) = k log(r) - r - log k! | |
# log poisson(k, r=exp(x)) = k * x - exp(x) - lgamma(k + 1) | |
return k * self.logr - tf.exp(self.logr) - tf.lgamma(k + 1) | |
def diag_gaussian_log_likelihood(z, mu=0.0, logvar=0.0): | |
"""Log-likelihood under a Gaussian distribution with diagonal covariance. | |
Returns the log-likelihood for each dimension. One should sum the | |
results for the log-likelihood under the full multidimensional model. | |
Args: | |
z: The value to compute the log-likelihood. | |
mu: The mean of the Gaussian | |
logvar: The log variance of the Gaussian. | |
Returns: | |
The log-likelihood under the Gaussian model. | |
""" | |
return -0.5 * (logvar + np.log(2*np.pi) + \ | |
tf.square((z-mu)/tf.exp(0.5*logvar))) | |
def gaussian_pos_log_likelihood(unused_mean, logvar, noise): | |
"""Gaussian log-likelihood function for a posterior in VAE | |
Note: This function is specialized for a posterior distribution, that has the | |
form of z = mean + sigma * noise. | |
Args: | |
unused_mean: ignore | |
logvar: The log variance of the distribution | |
noise: The noise used in the sampling of the posterior. | |
Returns: | |
The log-likelihood under the Gaussian model. | |
""" | |
# ln N(z; mean, sigma) = - ln(sigma) - 0.5 ln 2pi - noise^2 / 2 | |
return - 0.5 * (logvar + np.log(2 * np.pi) + tf.square(noise)) | |
class Gaussian(object): | |
"""Base class for Gaussian distribution classes.""" | |
pass | |
class DiagonalGaussian(Gaussian): | |
"""Diagonal Gaussian with different constant mean and variances in each | |
dimension. | |
""" | |
def __init__(self, batch_size, z_size, mean, logvar): | |
"""Create a diagonal gaussian distribution. | |
Args: | |
batch_size: The size of the batch, i.e. 0th dim in 2D tensor of samples. | |
z_size: The dimension of the distribution, i.e. 1st dim in 2D tensor. | |
mean: The N-D mean of the distribution. | |
logvar: The N-D log variance of the diagonal distribution. | |
""" | |
size__xz = [None, z_size] | |
self.mean = mean # bxn already | |
self.logvar = logvar # bxn already | |
self.noise = noise = tf.random_normal(tf.shape(logvar)) | |
self.sample = mean + tf.exp(0.5 * logvar) * noise | |
mean.set_shape(size__xz) | |
logvar.set_shape(size__xz) | |
self.sample.set_shape(size__xz) | |
def logp(self, z=None): | |
"""Compute the log-likelihood under the distribution. | |
Args: | |
z (optional): value to compute likelihood for, if None, use sample. | |
Returns: | |
The likelihood of z under the model. | |
""" | |
if z is None: | |
z = self.sample | |
# This is needed to make sure that the gradients are simple. | |
# The value of the function shouldn't change. | |
if z == self.sample: | |
return gaussian_pos_log_likelihood(self.mean, self.logvar, self.noise) | |
return diag_gaussian_log_likelihood(z, self.mean, self.logvar) | |
class LearnableDiagonalGaussian(Gaussian): | |
"""Diagonal Gaussian whose mean and variance are learned parameters.""" | |
def __init__(self, batch_size, z_size, name, mean_init=0.0, | |
var_init=1.0, var_min=0.0, var_max=1000000.0): | |
"""Create a learnable diagonal gaussian distribution. | |
Args: | |
batch_size: The size of the batch, i.e. 0th dim in 2D tensor of samples. | |
z_size: The dimension of the distribution, i.e. 1st dim in 2D tensor. | |
name: prefix name for the mean and log TF variables. | |
mean_init (optional): The N-D mean initialization of the distribution. | |
var_init (optional): The N-D variance initialization of the diagonal | |
distribution. | |
var_min (optional): The minimum value the learned variance can take in any | |
dimension. | |
var_max (optional): The maximum value the learned variance can take in any | |
dimension. | |
""" | |
size_1xn = [1, z_size] | |
size__xn = [None, z_size] | |
size_bx1 = tf.stack([batch_size, 1]) | |
assert var_init > 0.0, "Problems" | |
assert var_max >= var_min, "Problems" | |
assert var_init >= var_min, "Problems" | |
assert var_max >= var_init, "Problems" | |
z_mean_1xn = tf.get_variable(name=name+"/mean", shape=size_1xn, | |
initializer=tf.constant_initializer(mean_init)) | |
self.mean_bxn = mean_bxn = tf.tile(z_mean_1xn, size_bx1) | |
mean_bxn.set_shape(size__xn) # tile loses shape | |
log_var_init = np.log(var_init) | |
if var_max > var_min: | |
var_is_trainable = True | |
else: | |
var_is_trainable = False | |
z_logvar_1xn = \ | |
tf.get_variable(name=(name+"/logvar"), shape=size_1xn, | |
initializer=tf.constant_initializer(log_var_init), | |
trainable=var_is_trainable) | |
if var_is_trainable: | |
z_logit_var_1xn = tf.exp(z_logvar_1xn) | |
z_var_1xn = tf.nn.sigmoid(z_logit_var_1xn)*(var_max-var_min) + var_min | |
z_logvar_1xn = tf.log(z_var_1xn) | |
logvar_bxn = tf.tile(z_logvar_1xn, size_bx1) | |
self.logvar_bxn = logvar_bxn | |
self.noise_bxn = noise_bxn = tf.random_normal(tf.shape(logvar_bxn)) | |
self.sample_bxn = mean_bxn + tf.exp(0.5 * logvar_bxn) * noise_bxn | |
def logp(self, z=None): | |
"""Compute the log-likelihood under the distribution. | |
Args: | |
z (optional): value to compute likelihood for, if None, use sample. | |
Returns: | |
The likelihood of z under the model. | |
""" | |
if z is None: | |
z = self.sample | |
# This is needed to make sure that the gradients are simple. | |
# The value of the function shouldn't change. | |
if z == self.sample_bxn: | |
return gaussian_pos_log_likelihood(self.mean_bxn, self.logvar_bxn, | |
self.noise_bxn) | |
return diag_gaussian_log_likelihood(z, self.mean_bxn, self.logvar_bxn) | |
def mean(self): | |
return self.mean_bxn | |
def logvar(self): | |
return self.logvar_bxn | |
def sample(self): | |
return self.sample_bxn | |
class DiagonalGaussianFromInput(Gaussian): | |
"""Diagonal Gaussian whose mean and variance are conditioned on other | |
variables. | |
Note: the parameters to convert from input to the learned mean and log | |
variance are held in this class. | |
""" | |
def __init__(self, x_bxu, z_size, name, var_min=0.0): | |
"""Create an input dependent diagonal Gaussian distribution. | |
Args: | |
x: The input tensor from which the mean and variance are computed, | |
via a linear transformation of x. I.e. | |
mu = Wx + b, log(var) = Mx + c | |
z_size: The size of the distribution. | |
name: The name to prefix to learned variables. | |
var_min (optional): Minimal variance allowed. This is an additional | |
way to control the amount of information getting through the stochastic | |
layer. | |
""" | |
size_bxn = tf.stack([tf.shape(x_bxu)[0], z_size]) | |
self.mean_bxn = mean_bxn = linear(x_bxu, z_size, name=(name+"/mean")) | |
logvar_bxn = linear(x_bxu, z_size, name=(name+"/logvar")) | |
if var_min > 0.0: | |
logvar_bxn = tf.log(tf.exp(logvar_bxn) + var_min) | |
self.logvar_bxn = logvar_bxn | |
self.noise_bxn = noise_bxn = tf.random_normal(size_bxn) | |
self.noise_bxn.set_shape([None, z_size]) | |
self.sample_bxn = mean_bxn + tf.exp(0.5 * logvar_bxn) * noise_bxn | |
def logp(self, z=None): | |
"""Compute the log-likelihood under the distribution. | |
Args: | |
z (optional): value to compute likelihood for, if None, use sample. | |
Returns: | |
The likelihood of z under the model. | |
""" | |
if z is None: | |
z = self.sample | |
# This is needed to make sure that the gradients are simple. | |
# The value of the function shouldn't change. | |
if z == self.sample_bxn: | |
return gaussian_pos_log_likelihood(self.mean_bxn, | |
self.logvar_bxn, self.noise_bxn) | |
return diag_gaussian_log_likelihood(z, self.mean_bxn, self.logvar_bxn) | |
def mean(self): | |
return self.mean_bxn | |
def logvar(self): | |
return self.logvar_bxn | |
def sample(self): | |
return self.sample_bxn | |
class GaussianProcess: | |
"""Base class for Gaussian processes.""" | |
pass | |
class LearnableAutoRegressive1Prior(GaussianProcess): | |
"""AR(1) model where autocorrelation and process variance are learned | |
parameters. Assumed zero mean. | |
""" | |
def __init__(self, batch_size, z_size, | |
autocorrelation_taus, noise_variances, | |
do_train_prior_ar_atau, do_train_prior_ar_nvar, | |
num_steps, name): | |
"""Create a learnable autoregressive (1) process. | |
Args: | |
batch_size: The size of the batch, i.e. 0th dim in 2D tensor of samples. | |
z_size: The dimension of the distribution, i.e. 1st dim in 2D tensor. | |
autocorrelation_taus: The auto correlation time constant of the AR(1) | |
process. | |
A value of 0 is uncorrelated gaussian noise. | |
noise_variances: The variance of the additive noise, *not* the process | |
variance. | |
do_train_prior_ar_atau: Train or leave as constant, the autocorrelation? | |
do_train_prior_ar_nvar: Train or leave as constant, the noise variance? | |
num_steps: Number of steps to run the process. | |
name: The name to prefix to learned TF variables. | |
""" | |
# Note the use of the plural in all of these quantities. This is intended | |
# to mark that even though a sample z_t from the posterior is thought of a | |
# single sample of a multidimensional gaussian, the prior is actually | |
# thought of as U AR(1) processes, where U is the dimension of the inferred | |
# input. | |
size_bx1 = tf.stack([batch_size, 1]) | |
size__xu = [None, z_size] | |
# process variance, the variance at time t over all instantiations of AR(1) | |
# with these parameters. | |
log_evar_inits_1xu = tf.expand_dims(tf.log(noise_variances), 0) | |
self.logevars_1xu = logevars_1xu = \ | |
tf.Variable(log_evar_inits_1xu, name=name+"/logevars", dtype=tf.float32, | |
trainable=do_train_prior_ar_nvar) | |
self.logevars_bxu = logevars_bxu = tf.tile(logevars_1xu, size_bx1) | |
logevars_bxu.set_shape(size__xu) # tile loses shape | |
# \tau, which is the autocorrelation time constant of the AR(1) process | |
log_atau_inits_1xu = tf.expand_dims(tf.log(autocorrelation_taus), 0) | |
self.logataus_1xu = logataus_1xu = \ | |
tf.Variable(log_atau_inits_1xu, name=name+"/logatau", dtype=tf.float32, | |
trainable=do_train_prior_ar_atau) | |
# phi in x_t = \mu + phi x_tm1 + \eps | |
# phi = exp(-1/tau) | |
# phi = exp(-1/exp(logtau)) | |
# phi = exp(-exp(-logtau)) | |
phis_1xu = tf.exp(-tf.exp(-logataus_1xu)) | |
self.phis_bxu = phis_bxu = tf.tile(phis_1xu, size_bx1) | |
phis_bxu.set_shape(size__xu) | |
# process noise | |
# pvar = evar / (1- phi^2) | |
# logpvar = log ( exp(logevar) / (1 - phi^2) ) | |
# logpvar = logevar - log(1-phi^2) | |
# logpvar = logevar - (log(1-phi) + log(1+phi)) | |
self.logpvars_1xu = \ | |
logevars_1xu - tf.log(1.0-phis_1xu) - tf.log(1.0+phis_1xu) | |
self.logpvars_bxu = logpvars_bxu = tf.tile(self.logpvars_1xu, size_bx1) | |
logpvars_bxu.set_shape(size__xu) | |
# process mean (zero but included in for completeness) | |
self.pmeans_bxu = pmeans_bxu = tf.zeros_like(phis_bxu) | |
# For sampling from the prior during de-novo generation. | |
self.means_t = means_t = [None] * num_steps | |
self.logvars_t = logvars_t = [None] * num_steps | |
self.samples_t = samples_t = [None] * num_steps | |
self.gaussians_t = gaussians_t = [None] * num_steps | |
sample_bxu = tf.zeros_like(phis_bxu) | |
for t in range(num_steps): | |
# process variance used here to make process completely stationary | |
if t == 0: | |
logvar_pt_bxu = self.logpvars_bxu | |
else: | |
logvar_pt_bxu = self.logevars_bxu | |
z_mean_pt_bxu = pmeans_bxu + phis_bxu * sample_bxu | |
gaussians_t[t] = DiagonalGaussian(batch_size, z_size, | |
mean=z_mean_pt_bxu, | |
logvar=logvar_pt_bxu) | |
sample_bxu = gaussians_t[t].sample | |
samples_t[t] = sample_bxu | |
logvars_t[t] = logvar_pt_bxu | |
means_t[t] = z_mean_pt_bxu | |
def logp_t(self, z_t_bxu, z_tm1_bxu=None): | |
"""Compute the log-likelihood under the distribution for a given time t, | |
not the whole sequence. | |
Args: | |
z_t_bxu: sample to compute likelihood for at time t. | |
z_tm1_bxu (optional): sample condition probability of z_t upon. | |
Returns: | |
The likelihood of p_t under the model at time t. i.e. | |
p(z_t|z_tm1_bxu) = N(z_tm1_bxu * phis, eps^2) | |
""" | |
if z_tm1_bxu is None: | |
return diag_gaussian_log_likelihood(z_t_bxu, self.pmeans_bxu, | |
self.logpvars_bxu) | |
else: | |
means_t_bxu = self.pmeans_bxu + self.phis_bxu * z_tm1_bxu | |
logp_tgtm1_bxu = diag_gaussian_log_likelihood(z_t_bxu, | |
means_t_bxu, | |
self.logevars_bxu) | |
return logp_tgtm1_bxu | |
class KLCost_GaussianGaussian(object): | |
"""log p(x|z) + KL(q||p) terms for Gaussian posterior and Gaussian prior. See | |
eqn 10 and Appendix B in VAE for latter term, | |
http://arxiv.org/abs/1312.6114 | |
The log p(x|z) term is the reconstruction error under the model. | |
The KL term represents the penalty for passing information from the encoder | |
to the decoder. | |
To sample KL(q||p), we simply sample | |
ln q - ln p | |
by drawing samples from q and averaging. | |
""" | |
def __init__(self, zs, prior_zs): | |
"""Create a lower bound in three parts, normalized reconstruction | |
cost, normalized KL divergence cost, and their sum. | |
E_q[ln p(z_i | z_{i+1}) / q(z_i | x) | |
\int q(z) ln p(z) dz = - 0.5 ln(2pi) - 0.5 \sum (ln(sigma_p^2) + \ | |
sigma_q^2 / sigma_p^2 + (mean_p - mean_q)^2 / sigma_p^2) | |
\int q(z) ln q(z) dz = - 0.5 ln(2pi) - 0.5 \sum (ln(sigma_q^2) + 1) | |
Args: | |
zs: posterior z ~ q(z|x) | |
prior_zs: prior zs | |
""" | |
# L = -KL + log p(x|z), to maximize bound on likelihood | |
# -L = KL - log p(x|z), to minimize bound on NLL | |
# so 'KL cost' is postive KL divergence | |
kl_b = 0.0 | |
for z, prior_z in zip(zs, prior_zs): | |
assert isinstance(z, Gaussian) | |
assert isinstance(prior_z, Gaussian) | |
# ln(2pi) terms cancel | |
kl_b += 0.5 * tf.reduce_sum( | |
prior_z.logvar - z.logvar | |
+ tf.exp(z.logvar - prior_z.logvar) | |
+ tf.square((z.mean - prior_z.mean) / tf.exp(0.5 * prior_z.logvar)) | |
- 1.0, [1]) | |
self.kl_cost_b = kl_b | |
self.kl_cost = tf.reduce_mean(kl_b) | |
class KLCost_GaussianGaussianProcessSampled(object): | |
""" log p(x|z) + KL(q||p) terms for Gaussian posterior and Gaussian process | |
prior via sampling. | |
The log p(x|z) term is the reconstruction error under the model. | |
The KL term represents the penalty for passing information from the encoder | |
to the decoder. | |
To sample KL(q||p), we simply sample | |
ln q - ln p | |
by drawing samples from q and averaging. | |
""" | |
def __init__(self, post_zs, prior_z_process): | |
"""Create a lower bound in three parts, normalized reconstruction | |
cost, normalized KL divergence cost, and their sum. | |
Args: | |
post_zs: posterior z ~ q(z|x) | |
prior_z_process: prior AR(1) process | |
""" | |
assert len(post_zs) > 1, "GP is for time, need more than 1 time step." | |
assert isinstance(prior_z_process, GaussianProcess), "Must use GP." | |
# L = -KL + log p(x|z), to maximize bound on likelihood | |
# -L = KL - log p(x|z), to minimize bound on NLL | |
# so 'KL cost' is postive KL divergence | |
z0_bxu = post_zs[0].sample | |
logq_bxu = post_zs[0].logp(z0_bxu) | |
logp_bxu = prior_z_process.logp_t(z0_bxu) | |
z_tm1_bxu = z0_bxu | |
for z_t in post_zs[1:]: | |
# posterior is independent in time, prior is not | |
z_t_bxu = z_t.sample | |
logq_bxu += z_t.logp(z_t_bxu) | |
logp_bxu += prior_z_process.logp_t(z_t_bxu, z_tm1_bxu) | |
z_tm1_bxu = z_t_bxu | |
kl_bxu = logq_bxu - logp_bxu | |
kl_b = tf.reduce_sum(kl_bxu, [1]) | |
self.kl_cost_b = kl_b | |
self.kl_cost = tf.reduce_mean(kl_b) | |