NCTC / models /research /lfads /distributions.py
NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
17.4 kB
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ==============================================================================
import numpy as np
import tensorflow as tf
from utils import linear, log_sum_exp
class Poisson(object):
"""Poisson distributon
Computes the log probability under the model.
"""
def __init__(self, log_rates):
""" Create Poisson distributions with log_rates parameters.
Args:
log_rates: a tensor-like list of log rates underlying the Poisson dist.
"""
self.logr = log_rates
def logp(self, bin_counts):
"""Compute the log probability for the counts in the bin, under the model.
Args:
bin_counts: array-like integer counts
Returns:
The log-probability under the Poisson models for each element of
bin_counts.
"""
k = tf.to_float(bin_counts)
# log poisson(k, r) = log(r^k * e^(-r) / k!) = k log(r) - r - log k!
# log poisson(k, r=exp(x)) = k * x - exp(x) - lgamma(k + 1)
return k * self.logr - tf.exp(self.logr) - tf.lgamma(k + 1)
def diag_gaussian_log_likelihood(z, mu=0.0, logvar=0.0):
"""Log-likelihood under a Gaussian distribution with diagonal covariance.
Returns the log-likelihood for each dimension. One should sum the
results for the log-likelihood under the full multidimensional model.
Args:
z: The value to compute the log-likelihood.
mu: The mean of the Gaussian
logvar: The log variance of the Gaussian.
Returns:
The log-likelihood under the Gaussian model.
"""
return -0.5 * (logvar + np.log(2*np.pi) + \
tf.square((z-mu)/tf.exp(0.5*logvar)))
def gaussian_pos_log_likelihood(unused_mean, logvar, noise):
"""Gaussian log-likelihood function for a posterior in VAE
Note: This function is specialized for a posterior distribution, that has the
form of z = mean + sigma * noise.
Args:
unused_mean: ignore
logvar: The log variance of the distribution
noise: The noise used in the sampling of the posterior.
Returns:
The log-likelihood under the Gaussian model.
"""
# ln N(z; mean, sigma) = - ln(sigma) - 0.5 ln 2pi - noise^2 / 2
return - 0.5 * (logvar + np.log(2 * np.pi) + tf.square(noise))
class Gaussian(object):
"""Base class for Gaussian distribution classes."""
pass
class DiagonalGaussian(Gaussian):
"""Diagonal Gaussian with different constant mean and variances in each
dimension.
"""
def __init__(self, batch_size, z_size, mean, logvar):
"""Create a diagonal gaussian distribution.
Args:
batch_size: The size of the batch, i.e. 0th dim in 2D tensor of samples.
z_size: The dimension of the distribution, i.e. 1st dim in 2D tensor.
mean: The N-D mean of the distribution.
logvar: The N-D log variance of the diagonal distribution.
"""
size__xz = [None, z_size]
self.mean = mean # bxn already
self.logvar = logvar # bxn already
self.noise = noise = tf.random_normal(tf.shape(logvar))
self.sample = mean + tf.exp(0.5 * logvar) * noise
mean.set_shape(size__xz)
logvar.set_shape(size__xz)
self.sample.set_shape(size__xz)
def logp(self, z=None):
"""Compute the log-likelihood under the distribution.
Args:
z (optional): value to compute likelihood for, if None, use sample.
Returns:
The likelihood of z under the model.
"""
if z is None:
z = self.sample
# This is needed to make sure that the gradients are simple.
# The value of the function shouldn't change.
if z == self.sample:
return gaussian_pos_log_likelihood(self.mean, self.logvar, self.noise)
return diag_gaussian_log_likelihood(z, self.mean, self.logvar)
class LearnableDiagonalGaussian(Gaussian):
"""Diagonal Gaussian whose mean and variance are learned parameters."""
def __init__(self, batch_size, z_size, name, mean_init=0.0,
var_init=1.0, var_min=0.0, var_max=1000000.0):
"""Create a learnable diagonal gaussian distribution.
Args:
batch_size: The size of the batch, i.e. 0th dim in 2D tensor of samples.
z_size: The dimension of the distribution, i.e. 1st dim in 2D tensor.
name: prefix name for the mean and log TF variables.
mean_init (optional): The N-D mean initialization of the distribution.
var_init (optional): The N-D variance initialization of the diagonal
distribution.
var_min (optional): The minimum value the learned variance can take in any
dimension.
var_max (optional): The maximum value the learned variance can take in any
dimension.
"""
size_1xn = [1, z_size]
size__xn = [None, z_size]
size_bx1 = tf.stack([batch_size, 1])
assert var_init > 0.0, "Problems"
assert var_max >= var_min, "Problems"
assert var_init >= var_min, "Problems"
assert var_max >= var_init, "Problems"
z_mean_1xn = tf.get_variable(name=name+"/mean", shape=size_1xn,
initializer=tf.constant_initializer(mean_init))
self.mean_bxn = mean_bxn = tf.tile(z_mean_1xn, size_bx1)
mean_bxn.set_shape(size__xn) # tile loses shape
log_var_init = np.log(var_init)
if var_max > var_min:
var_is_trainable = True
else:
var_is_trainable = False
z_logvar_1xn = \
tf.get_variable(name=(name+"/logvar"), shape=size_1xn,
initializer=tf.constant_initializer(log_var_init),
trainable=var_is_trainable)
if var_is_trainable:
z_logit_var_1xn = tf.exp(z_logvar_1xn)
z_var_1xn = tf.nn.sigmoid(z_logit_var_1xn)*(var_max-var_min) + var_min
z_logvar_1xn = tf.log(z_var_1xn)
logvar_bxn = tf.tile(z_logvar_1xn, size_bx1)
self.logvar_bxn = logvar_bxn
self.noise_bxn = noise_bxn = tf.random_normal(tf.shape(logvar_bxn))
self.sample_bxn = mean_bxn + tf.exp(0.5 * logvar_bxn) * noise_bxn
def logp(self, z=None):
"""Compute the log-likelihood under the distribution.
Args:
z (optional): value to compute likelihood for, if None, use sample.
Returns:
The likelihood of z under the model.
"""
if z is None:
z = self.sample
# This is needed to make sure that the gradients are simple.
# The value of the function shouldn't change.
if z == self.sample_bxn:
return gaussian_pos_log_likelihood(self.mean_bxn, self.logvar_bxn,
self.noise_bxn)
return diag_gaussian_log_likelihood(z, self.mean_bxn, self.logvar_bxn)
@property
def mean(self):
return self.mean_bxn
@property
def logvar(self):
return self.logvar_bxn
@property
def sample(self):
return self.sample_bxn
class DiagonalGaussianFromInput(Gaussian):
"""Diagonal Gaussian whose mean and variance are conditioned on other
variables.
Note: the parameters to convert from input to the learned mean and log
variance are held in this class.
"""
def __init__(self, x_bxu, z_size, name, var_min=0.0):
"""Create an input dependent diagonal Gaussian distribution.
Args:
x: The input tensor from which the mean and variance are computed,
via a linear transformation of x. I.e.
mu = Wx + b, log(var) = Mx + c
z_size: The size of the distribution.
name: The name to prefix to learned variables.
var_min (optional): Minimal variance allowed. This is an additional
way to control the amount of information getting through the stochastic
layer.
"""
size_bxn = tf.stack([tf.shape(x_bxu)[0], z_size])
self.mean_bxn = mean_bxn = linear(x_bxu, z_size, name=(name+"/mean"))
logvar_bxn = linear(x_bxu, z_size, name=(name+"/logvar"))
if var_min > 0.0:
logvar_bxn = tf.log(tf.exp(logvar_bxn) + var_min)
self.logvar_bxn = logvar_bxn
self.noise_bxn = noise_bxn = tf.random_normal(size_bxn)
self.noise_bxn.set_shape([None, z_size])
self.sample_bxn = mean_bxn + tf.exp(0.5 * logvar_bxn) * noise_bxn
def logp(self, z=None):
"""Compute the log-likelihood under the distribution.
Args:
z (optional): value to compute likelihood for, if None, use sample.
Returns:
The likelihood of z under the model.
"""
if z is None:
z = self.sample
# This is needed to make sure that the gradients are simple.
# The value of the function shouldn't change.
if z == self.sample_bxn:
return gaussian_pos_log_likelihood(self.mean_bxn,
self.logvar_bxn, self.noise_bxn)
return diag_gaussian_log_likelihood(z, self.mean_bxn, self.logvar_bxn)
@property
def mean(self):
return self.mean_bxn
@property
def logvar(self):
return self.logvar_bxn
@property
def sample(self):
return self.sample_bxn
class GaussianProcess:
"""Base class for Gaussian processes."""
pass
class LearnableAutoRegressive1Prior(GaussianProcess):
"""AR(1) model where autocorrelation and process variance are learned
parameters. Assumed zero mean.
"""
def __init__(self, batch_size, z_size,
autocorrelation_taus, noise_variances,
do_train_prior_ar_atau, do_train_prior_ar_nvar,
num_steps, name):
"""Create a learnable autoregressive (1) process.
Args:
batch_size: The size of the batch, i.e. 0th dim in 2D tensor of samples.
z_size: The dimension of the distribution, i.e. 1st dim in 2D tensor.
autocorrelation_taus: The auto correlation time constant of the AR(1)
process.
A value of 0 is uncorrelated gaussian noise.
noise_variances: The variance of the additive noise, *not* the process
variance.
do_train_prior_ar_atau: Train or leave as constant, the autocorrelation?
do_train_prior_ar_nvar: Train or leave as constant, the noise variance?
num_steps: Number of steps to run the process.
name: The name to prefix to learned TF variables.
"""
# Note the use of the plural in all of these quantities. This is intended
# to mark that even though a sample z_t from the posterior is thought of a
# single sample of a multidimensional gaussian, the prior is actually
# thought of as U AR(1) processes, where U is the dimension of the inferred
# input.
size_bx1 = tf.stack([batch_size, 1])
size__xu = [None, z_size]
# process variance, the variance at time t over all instantiations of AR(1)
# with these parameters.
log_evar_inits_1xu = tf.expand_dims(tf.log(noise_variances), 0)
self.logevars_1xu = logevars_1xu = \
tf.Variable(log_evar_inits_1xu, name=name+"/logevars", dtype=tf.float32,
trainable=do_train_prior_ar_nvar)
self.logevars_bxu = logevars_bxu = tf.tile(logevars_1xu, size_bx1)
logevars_bxu.set_shape(size__xu) # tile loses shape
# \tau, which is the autocorrelation time constant of the AR(1) process
log_atau_inits_1xu = tf.expand_dims(tf.log(autocorrelation_taus), 0)
self.logataus_1xu = logataus_1xu = \
tf.Variable(log_atau_inits_1xu, name=name+"/logatau", dtype=tf.float32,
trainable=do_train_prior_ar_atau)
# phi in x_t = \mu + phi x_tm1 + \eps
# phi = exp(-1/tau)
# phi = exp(-1/exp(logtau))
# phi = exp(-exp(-logtau))
phis_1xu = tf.exp(-tf.exp(-logataus_1xu))
self.phis_bxu = phis_bxu = tf.tile(phis_1xu, size_bx1)
phis_bxu.set_shape(size__xu)
# process noise
# pvar = evar / (1- phi^2)
# logpvar = log ( exp(logevar) / (1 - phi^2) )
# logpvar = logevar - log(1-phi^2)
# logpvar = logevar - (log(1-phi) + log(1+phi))
self.logpvars_1xu = \
logevars_1xu - tf.log(1.0-phis_1xu) - tf.log(1.0+phis_1xu)
self.logpvars_bxu = logpvars_bxu = tf.tile(self.logpvars_1xu, size_bx1)
logpvars_bxu.set_shape(size__xu)
# process mean (zero but included in for completeness)
self.pmeans_bxu = pmeans_bxu = tf.zeros_like(phis_bxu)
# For sampling from the prior during de-novo generation.
self.means_t = means_t = [None] * num_steps
self.logvars_t = logvars_t = [None] * num_steps
self.samples_t = samples_t = [None] * num_steps
self.gaussians_t = gaussians_t = [None] * num_steps
sample_bxu = tf.zeros_like(phis_bxu)
for t in range(num_steps):
# process variance used here to make process completely stationary
if t == 0:
logvar_pt_bxu = self.logpvars_bxu
else:
logvar_pt_bxu = self.logevars_bxu
z_mean_pt_bxu = pmeans_bxu + phis_bxu * sample_bxu
gaussians_t[t] = DiagonalGaussian(batch_size, z_size,
mean=z_mean_pt_bxu,
logvar=logvar_pt_bxu)
sample_bxu = gaussians_t[t].sample
samples_t[t] = sample_bxu
logvars_t[t] = logvar_pt_bxu
means_t[t] = z_mean_pt_bxu
def logp_t(self, z_t_bxu, z_tm1_bxu=None):
"""Compute the log-likelihood under the distribution for a given time t,
not the whole sequence.
Args:
z_t_bxu: sample to compute likelihood for at time t.
z_tm1_bxu (optional): sample condition probability of z_t upon.
Returns:
The likelihood of p_t under the model at time t. i.e.
p(z_t|z_tm1_bxu) = N(z_tm1_bxu * phis, eps^2)
"""
if z_tm1_bxu is None:
return diag_gaussian_log_likelihood(z_t_bxu, self.pmeans_bxu,
self.logpvars_bxu)
else:
means_t_bxu = self.pmeans_bxu + self.phis_bxu * z_tm1_bxu
logp_tgtm1_bxu = diag_gaussian_log_likelihood(z_t_bxu,
means_t_bxu,
self.logevars_bxu)
return logp_tgtm1_bxu
class KLCost_GaussianGaussian(object):
"""log p(x|z) + KL(q||p) terms for Gaussian posterior and Gaussian prior. See
eqn 10 and Appendix B in VAE for latter term,
http://arxiv.org/abs/1312.6114
The log p(x|z) term is the reconstruction error under the model.
The KL term represents the penalty for passing information from the encoder
to the decoder.
To sample KL(q||p), we simply sample
ln q - ln p
by drawing samples from q and averaging.
"""
def __init__(self, zs, prior_zs):
"""Create a lower bound in three parts, normalized reconstruction
cost, normalized KL divergence cost, and their sum.
E_q[ln p(z_i | z_{i+1}) / q(z_i | x)
\int q(z) ln p(z) dz = - 0.5 ln(2pi) - 0.5 \sum (ln(sigma_p^2) + \
sigma_q^2 / sigma_p^2 + (mean_p - mean_q)^2 / sigma_p^2)
\int q(z) ln q(z) dz = - 0.5 ln(2pi) - 0.5 \sum (ln(sigma_q^2) + 1)
Args:
zs: posterior z ~ q(z|x)
prior_zs: prior zs
"""
# L = -KL + log p(x|z), to maximize bound on likelihood
# -L = KL - log p(x|z), to minimize bound on NLL
# so 'KL cost' is postive KL divergence
kl_b = 0.0
for z, prior_z in zip(zs, prior_zs):
assert isinstance(z, Gaussian)
assert isinstance(prior_z, Gaussian)
# ln(2pi) terms cancel
kl_b += 0.5 * tf.reduce_sum(
prior_z.logvar - z.logvar
+ tf.exp(z.logvar - prior_z.logvar)
+ tf.square((z.mean - prior_z.mean) / tf.exp(0.5 * prior_z.logvar))
- 1.0, [1])
self.kl_cost_b = kl_b
self.kl_cost = tf.reduce_mean(kl_b)
class KLCost_GaussianGaussianProcessSampled(object):
""" log p(x|z) + KL(q||p) terms for Gaussian posterior and Gaussian process
prior via sampling.
The log p(x|z) term is the reconstruction error under the model.
The KL term represents the penalty for passing information from the encoder
to the decoder.
To sample KL(q||p), we simply sample
ln q - ln p
by drawing samples from q and averaging.
"""
def __init__(self, post_zs, prior_z_process):
"""Create a lower bound in three parts, normalized reconstruction
cost, normalized KL divergence cost, and their sum.
Args:
post_zs: posterior z ~ q(z|x)
prior_z_process: prior AR(1) process
"""
assert len(post_zs) > 1, "GP is for time, need more than 1 time step."
assert isinstance(prior_z_process, GaussianProcess), "Must use GP."
# L = -KL + log p(x|z), to maximize bound on likelihood
# -L = KL - log p(x|z), to minimize bound on NLL
# so 'KL cost' is postive KL divergence
z0_bxu = post_zs[0].sample
logq_bxu = post_zs[0].logp(z0_bxu)
logp_bxu = prior_z_process.logp_t(z0_bxu)
z_tm1_bxu = z0_bxu
for z_t in post_zs[1:]:
# posterior is independent in time, prior is not
z_t_bxu = z_t.sample
logq_bxu += z_t.logp(z_t_bxu)
logp_bxu += prior_z_process.logp_t(z_t_bxu, z_tm1_bxu)
z_tm1_bxu = z_t_bxu
kl_bxu = logq_bxu - logp_bxu
kl_b = tf.reduce_sum(kl_bxu, [1])
self.kl_cost_b = kl_b
self.kl_cost = tf.reduce_mean(kl_b)