Spaces:
Sleeping
Sleeping
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Eval pre-trained 1 billion word language model. | |
""" | |
import os | |
import sys | |
import numpy as np | |
from six.moves import xrange | |
import tensorflow as tf | |
from google.protobuf import text_format | |
import data_utils | |
FLAGS = tf.flags.FLAGS | |
# General flags. | |
tf.flags.DEFINE_string('mode', 'eval', | |
'One of [sample, eval, dump_emb, dump_lstm_emb]. ' | |
'"sample" mode samples future word predictions, using ' | |
'FLAGS.prefix as prefix (prefix could be left empty). ' | |
'"eval" mode calculates perplexity of the ' | |
'FLAGS.input_data. ' | |
'"dump_emb" mode dumps word and softmax embeddings to ' | |
'FLAGS.save_dir. embeddings are dumped in the same ' | |
'order as words in vocabulary. All words in vocabulary ' | |
'are dumped.' | |
'dump_lstm_emb dumps lstm embeddings of FLAGS.sentence ' | |
'to FLAGS.save_dir.') | |
tf.flags.DEFINE_string('pbtxt', '', | |
'GraphDef proto text file used to construct model ' | |
'structure.') | |
tf.flags.DEFINE_string('ckpt', '', | |
'Checkpoint directory used to fill model values.') | |
tf.flags.DEFINE_string('vocab_file', '', 'Vocabulary file.') | |
tf.flags.DEFINE_string('save_dir', '', | |
'Used for "dump_emb" mode to save word embeddings.') | |
# sample mode flags. | |
tf.flags.DEFINE_string('prefix', '', | |
'Used for "sample" mode to predict next words.') | |
tf.flags.DEFINE_integer('max_sample_words', 100, | |
'Sampling stops either when </S> is met or this number ' | |
'of steps has passed.') | |
tf.flags.DEFINE_integer('num_samples', 3, | |
'Number of samples to generate for the prefix.') | |
# dump_lstm_emb mode flags. | |
tf.flags.DEFINE_string('sentence', '', | |
'Used as input for "dump_lstm_emb" mode.') | |
# eval mode flags. | |
tf.flags.DEFINE_string('input_data', '', | |
'Input data files for eval model.') | |
tf.flags.DEFINE_integer('max_eval_steps', 1000000, | |
'Maximum mumber of steps to run "eval" mode.') | |
# For saving demo resources, use batch size 1 and step 1. | |
BATCH_SIZE = 1 | |
NUM_TIMESTEPS = 1 | |
MAX_WORD_LEN = 50 | |
def _LoadModel(gd_file, ckpt_file): | |
"""Load the model from GraphDef and Checkpoint. | |
Args: | |
gd_file: GraphDef proto text file. | |
ckpt_file: TensorFlow Checkpoint file. | |
Returns: | |
TensorFlow session and tensors dict. | |
""" | |
with tf.Graph().as_default(): | |
sys.stderr.write('Recovering graph.\n') | |
with tf.gfile.FastGFile(gd_file, 'r') as f: | |
s = f.read().decode() | |
gd = tf.GraphDef() | |
text_format.Merge(s, gd) | |
tf.logging.info('Recovering Graph %s', gd_file) | |
t = {} | |
[t['states_init'], t['lstm/lstm_0/control_dependency'], | |
t['lstm/lstm_1/control_dependency'], t['softmax_out'], t['class_ids_out'], | |
t['class_weights_out'], t['log_perplexity_out'], t['inputs_in'], | |
t['targets_in'], t['target_weights_in'], t['char_inputs_in'], | |
t['all_embs'], t['softmax_weights'], t['global_step'] | |
] = tf.import_graph_def(gd, {}, ['states_init', | |
'lstm/lstm_0/control_dependency:0', | |
'lstm/lstm_1/control_dependency:0', | |
'softmax_out:0', | |
'class_ids_out:0', | |
'class_weights_out:0', | |
'log_perplexity_out:0', | |
'inputs_in:0', | |
'targets_in:0', | |
'target_weights_in:0', | |
'char_inputs_in:0', | |
'all_embs_out:0', | |
'Reshape_3:0', | |
'global_step:0'], name='') | |
sys.stderr.write('Recovering checkpoint %s\n' % ckpt_file) | |
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) | |
sess.run('save/restore_all', {'save/Const:0': ckpt_file}) | |
sess.run(t['states_init']) | |
return sess, t | |
def _EvalModel(dataset): | |
"""Evaluate model perplexity using provided dataset. | |
Args: | |
dataset: LM1BDataset object. | |
""" | |
sess, t = _LoadModel(FLAGS.pbtxt, FLAGS.ckpt) | |
current_step = t['global_step'].eval(session=sess) | |
sys.stderr.write('Loaded step %d.\n' % current_step) | |
data_gen = dataset.get_batch(BATCH_SIZE, NUM_TIMESTEPS, forever=False) | |
sum_num = 0.0 | |
sum_den = 0.0 | |
perplexity = 0.0 | |
for i, (inputs, char_inputs, _, targets, weights) in enumerate(data_gen): | |
input_dict = {t['inputs_in']: inputs, | |
t['targets_in']: targets, | |
t['target_weights_in']: weights} | |
if 'char_inputs_in' in t: | |
input_dict[t['char_inputs_in']] = char_inputs | |
log_perp = sess.run(t['log_perplexity_out'], feed_dict=input_dict) | |
if np.isnan(log_perp): | |
sys.stderr.error('log_perplexity is Nan.\n') | |
else: | |
sum_num += log_perp * weights.mean() | |
sum_den += weights.mean() | |
if sum_den > 0: | |
perplexity = np.exp(sum_num / sum_den) | |
sys.stderr.write('Eval Step: %d, Average Perplexity: %f.\n' % | |
(i, perplexity)) | |
if i > FLAGS.max_eval_steps: | |
break | |
def _SampleSoftmax(softmax): | |
return min(np.sum(np.cumsum(softmax) < np.random.rand()), len(softmax) - 1) | |
def _SampleModel(prefix_words, vocab): | |
"""Predict next words using the given prefix words. | |
Args: | |
prefix_words: Prefix words. | |
vocab: Vocabulary. Contains max word chard id length and converts between | |
words and ids. | |
""" | |
targets = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32) | |
weights = np.ones([BATCH_SIZE, NUM_TIMESTEPS], np.float32) | |
sess, t = _LoadModel(FLAGS.pbtxt, FLAGS.ckpt) | |
if prefix_words.find('<S>') != 0: | |
prefix_words = '<S> ' + prefix_words | |
prefix = [vocab.word_to_id(w) for w in prefix_words.split()] | |
prefix_char_ids = [vocab.word_to_char_ids(w) for w in prefix_words.split()] | |
for _ in xrange(FLAGS.num_samples): | |
inputs = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32) | |
char_ids_inputs = np.zeros( | |
[BATCH_SIZE, NUM_TIMESTEPS, vocab.max_word_length], np.int32) | |
samples = prefix[:] | |
char_ids_samples = prefix_char_ids[:] | |
sent = '' | |
while True: | |
inputs[0, 0] = samples[0] | |
char_ids_inputs[0, 0, :] = char_ids_samples[0] | |
samples = samples[1:] | |
char_ids_samples = char_ids_samples[1:] | |
softmax = sess.run(t['softmax_out'], | |
feed_dict={t['char_inputs_in']: char_ids_inputs, | |
t['inputs_in']: inputs, | |
t['targets_in']: targets, | |
t['target_weights_in']: weights}) | |
sample = _SampleSoftmax(softmax[0]) | |
sample_char_ids = vocab.word_to_char_ids(vocab.id_to_word(sample)) | |
if not samples: | |
samples = [sample] | |
char_ids_samples = [sample_char_ids] | |
sent += vocab.id_to_word(samples[0]) + ' ' | |
sys.stderr.write('%s\n' % sent) | |
if (vocab.id_to_word(samples[0]) == '</S>' or | |
len(sent) > FLAGS.max_sample_words): | |
break | |
def _DumpEmb(vocab): | |
"""Dump the softmax weights and word embeddings to files. | |
Args: | |
vocab: Vocabulary. Contains vocabulary size and converts word to ids. | |
""" | |
assert FLAGS.save_dir, 'Must specify FLAGS.save_dir for dump_emb.' | |
inputs = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32) | |
targets = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32) | |
weights = np.ones([BATCH_SIZE, NUM_TIMESTEPS], np.float32) | |
sess, t = _LoadModel(FLAGS.pbtxt, FLAGS.ckpt) | |
softmax_weights = sess.run(t['softmax_weights']) | |
fname = FLAGS.save_dir + '/embeddings_softmax.npy' | |
with tf.gfile.Open(fname, mode='w') as f: | |
np.save(f, softmax_weights) | |
sys.stderr.write('Finished softmax weights\n') | |
all_embs = np.zeros([vocab.size, 1024]) | |
for i in xrange(vocab.size): | |
input_dict = {t['inputs_in']: inputs, | |
t['targets_in']: targets, | |
t['target_weights_in']: weights} | |
if 'char_inputs_in' in t: | |
input_dict[t['char_inputs_in']] = ( | |
vocab.word_char_ids[i].reshape([-1, 1, MAX_WORD_LEN])) | |
embs = sess.run(t['all_embs'], input_dict) | |
all_embs[i, :] = embs | |
sys.stderr.write('Finished word embedding %d/%d\n' % (i, vocab.size)) | |
fname = FLAGS.save_dir + '/embeddings_char_cnn.npy' | |
with tf.gfile.Open(fname, mode='w') as f: | |
np.save(f, all_embs) | |
sys.stderr.write('Embedding file saved\n') | |
def _DumpSentenceEmbedding(sentence, vocab): | |
"""Predict next words using the given prefix words. | |
Args: | |
sentence: Sentence words. | |
vocab: Vocabulary. Contains max word chard id length and converts between | |
words and ids. | |
""" | |
targets = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32) | |
weights = np.ones([BATCH_SIZE, NUM_TIMESTEPS], np.float32) | |
sess, t = _LoadModel(FLAGS.pbtxt, FLAGS.ckpt) | |
if sentence.find('<S>') != 0: | |
sentence = '<S> ' + sentence | |
word_ids = [vocab.word_to_id(w) for w in sentence.split()] | |
char_ids = [vocab.word_to_char_ids(w) for w in sentence.split()] | |
inputs = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32) | |
char_ids_inputs = np.zeros( | |
[BATCH_SIZE, NUM_TIMESTEPS, vocab.max_word_length], np.int32) | |
for i in xrange(len(word_ids)): | |
inputs[0, 0] = word_ids[i] | |
char_ids_inputs[0, 0, :] = char_ids[i] | |
# Add 'lstm/lstm_0/control_dependency' if you want to dump previous layer | |
# LSTM. | |
lstm_emb = sess.run(t['lstm/lstm_1/control_dependency'], | |
feed_dict={t['char_inputs_in']: char_ids_inputs, | |
t['inputs_in']: inputs, | |
t['targets_in']: targets, | |
t['target_weights_in']: weights}) | |
fname = os.path.join(FLAGS.save_dir, 'lstm_emb_step_%d.npy' % i) | |
with tf.gfile.Open(fname, mode='w') as f: | |
np.save(f, lstm_emb) | |
sys.stderr.write('LSTM embedding step %d file saved\n' % i) | |
def main(unused_argv): | |
vocab = data_utils.CharsVocabulary(FLAGS.vocab_file, MAX_WORD_LEN) | |
if FLAGS.mode == 'eval': | |
dataset = data_utils.LM1BDataset(FLAGS.input_data, vocab) | |
_EvalModel(dataset) | |
elif FLAGS.mode == 'sample': | |
_SampleModel(FLAGS.prefix, vocab) | |
elif FLAGS.mode == 'dump_emb': | |
_DumpEmb(vocab) | |
elif FLAGS.mode == 'dump_lstm_emb': | |
_DumpSentenceEmbedding(FLAGS.sentence, vocab) | |
else: | |
raise Exception('Mode not supported.') | |
if __name__ == '__main__': | |
tf.app.run() | |