Spaces:
Running
Running
# Copyright 2017 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Provides data for the ImageNet ILSVRC 2012 Dataset plus some bounding boxes. | |
Some images have one or more bounding boxes associated with the label of the | |
image. See details here: http://image-net.org/download-bboxes | |
WARNING: Don't use for object detection, in this case all the bounding boxes | |
of the image belong to just one class. | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import os | |
import tensorflow as tf | |
slim = tf.contrib.slim | |
_FILE_PATTERN = '%s-*' | |
_SPLITS_TO_SIZES = { | |
'train': 1281167, | |
'validation': 50000, | |
} | |
_ITEMS_TO_DESCRIPTIONS = { | |
'image': 'A color image of varying height and width.', | |
'label': 'The label id of the image, integer between 0 and 999', | |
'label_text': 'The text of the label.', | |
'object/bbox': 'A list of bounding boxes.', | |
'object/label': 'A list of labels, one per each object.', | |
} | |
_NUM_CLASSES = 1001 | |
def get_split(split_name, dataset_dir, file_pattern=None, reader=None): | |
"""Gets a dataset tuple with instructions for reading ImageNet. | |
Args: | |
split_name: A train/test split name. | |
dataset_dir: The base directory of the dataset sources. | |
file_pattern: The file pattern to use when matching the dataset sources. | |
It is assumed that the pattern contains a '%s' string so that the split | |
name can be inserted. | |
reader: The TensorFlow reader type. | |
Returns: | |
A `Dataset` namedtuple. | |
Raises: | |
ValueError: if `split_name` is not a valid train/test split. | |
""" | |
if split_name not in _SPLITS_TO_SIZES: | |
raise ValueError('split name %s was not recognized.' % split_name) | |
if not file_pattern: | |
file_pattern = _FILE_PATTERN | |
file_pattern = os.path.join(dataset_dir, file_pattern % split_name) | |
# Allowing None in the signature so that dataset_factory can use the default. | |
if reader is None: | |
reader = tf.TFRecordReader | |
keys_to_features = { | |
'image/encoded': tf.FixedLenFeature( | |
(), tf.string, default_value=''), | |
'image/format': tf.FixedLenFeature( | |
(), tf.string, default_value='jpeg'), | |
'image/class/label': tf.FixedLenFeature( | |
[], dtype=tf.int64, default_value=-1), | |
'image/class/text': tf.FixedLenFeature( | |
[], dtype=tf.string, default_value=''), | |
'image/object/bbox/xmin': tf.VarLenFeature( | |
dtype=tf.float32), | |
'image/object/bbox/ymin': tf.VarLenFeature( | |
dtype=tf.float32), | |
'image/object/bbox/xmax': tf.VarLenFeature( | |
dtype=tf.float32), | |
'image/object/bbox/ymax': tf.VarLenFeature( | |
dtype=tf.float32), | |
'image/object/class/label': tf.VarLenFeature( | |
dtype=tf.int64), | |
} | |
items_to_handlers = { | |
'image': slim.tfexample_decoder.Image('image/encoded', 'image/format'), | |
'label': slim.tfexample_decoder.Tensor('image/class/label'), | |
'label_text': slim.tfexample_decoder.Tensor('image/class/text'), | |
'object/bbox': slim.tfexample_decoder.BoundingBox( | |
['ymin', 'xmin', 'ymax', 'xmax'], 'image/object/bbox/'), | |
'object/label': slim.tfexample_decoder.Tensor('image/object/class/label'), | |
} | |
decoder = slim.tfexample_decoder.TFExampleDecoder( | |
keys_to_features, items_to_handlers) | |
return slim.dataset.Dataset( | |
data_sources=file_pattern, | |
reader=reader, | |
decoder=decoder, | |
num_samples=_SPLITS_TO_SIZES[split_name], | |
items_to_descriptions=_ITEMS_TO_DESCRIPTIONS, | |
num_classes=_NUM_CLASSES) | |