Nick088's picture
Update app.py
b3925d0 verified
raw
history blame
4.12 kB
import torch
from diffusers import StableDiffusion3Pipeline
import gradio as gr
import os
import transformers
import numpy as np
from transformers import T5Tokenizer, T5ForConditionalGeneration
import spaces
HF_TOKEN = os.getenv("HF_TOKEN")
if torch.cuda.is_available():
device = "cuda"
print("Using GPU")
else:
device = "cpu"
print("Using CPU")
MAX_SEED = np.iinfo(np.int32).max
# Initialize the pipeline and download the sd3 medium model
pipe = StableDiffusion3Pipeline.from_pretrained(model_path, torch_dtype=torch.float16)
pipe.to(device)
# superprompt-v1
tokenizer = T5Tokenizer.from_pretrained("roborovski/superprompt-v1")
model = T5ForConditionalGeneration.from_pretrained("roborovski/superprompt-v1", device_map="auto", torch_dtype="auto")
model.to(device)
# Define the image generation function
@spaces.GPU(duration=60 * 2)
def generate_image(prompt, enhance_prompt, negative_prompt, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt):
if seed == 0:
seed = random.randint(1, 2**32-1)
if enhance_prompt:
transformers.set_seed(seed)
input_text = f"Expand the following prompt to add more detail: {prompt}"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
outputs = model.generate(
input_ids,
max_new_tokens=512,
repetition_penalty=1.2,
do_sample=True,
temperature=0.7,
top_p=1,
top_k=50
)
prompt = tokenizer.decode(outputs[0], skip_special_tokens=True)
generator = torch.Generator().manual_seed(seed)
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
height=height,
width=width,
guidance_scale=guidance_scale,
generator=generator,
num_images_per_prompt=num_images_per_prompt
).images
return output
# Create the Gradio interface
prompt = gr.Textbox(label="Prompt", info="Describe the image you want", placeholder="A cat...")
enhance_prompt = gr.Checkbox(label="Prompt Enhancement", info="Enhance your prompt with SuperPrompt-v1", value=True)
negative_prompt = gr.Textbox(label="Negative Prompt", info="Describe what you don't want in the image", value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", placeholder="Ugly, bad anatomy...")
num_inference_steps = gr.Number(label="Number of Inference Steps", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", precision=0, value=25)
height = gr.Slider(label="Height", info="Height of the Image", minimum=256, maximum=1344, step=32, value=1024)
width = gr.Slider(label="Width", info="Width of the Image", minimum=256, maximum=1344, step=32, value=1024)
guidance_scale = gr.Slider(label="Guidance Scale", info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", minimum=0.0, maximum=10.0, value=7.5, step=0.1)
seed = gr.Slider(value=42, minimum=0, maximum=MAX_SEED, step=1, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one")
num_images_per_prompt = gr.Slider(label="Number of Images to generate with the settings",minimum=1, maximum=4, step=1, value=1)
interface = gr.Interface(
fn=generate_image,
inputs=[prompt, enhance_prompt, negative_prompt, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt],
outputs=gr.Gallery(label="Generated AI Images", elem_id="gallery", show_label=False),
title="Stable Diffusion 3 Medium",
description="Made by <a href='https://linktr.ee/Nick088' target='_blank'>Nick088</a> \n Join https://discord.gg/osai to talk about Open Source AI"
)
# Launch the interface
interface.launch(share = False)