Spaces:
Sleeping
Sleeping
File size: 32,733 Bytes
e93c659 4a303ce 0d0c645 dc94424 16e89c0 e93c659 73dcc35 105bca0 e93c659 49ebae9 544275a d51aeae 544275a 3c85094 e93c659 aaf258e 0d0c645 aaf258e 6a7c0e6 aaf258e 2f35b39 306ab4d c4a9d91 dfc8b26 45e4726 0d0c645 83a2e73 e93c659 0d0c645 83a2e73 0d0c645 83a2e73 0d0c645 83a2e73 0d0c645 83a2e73 a1203ca 743b6b7 9260769 a1203ca 9260769 a1203ca 2b3514d a1203ca 0d0c645 c94ba08 a1203ca 9f2ad27 37deaa1 c94ba08 37deaa1 fcd198b dd69d15 3488e95 242350b fcd198b dd69d15 37deaa1 16e89c0 bc641c8 37deaa1 242350b 37deaa1 cf2d407 9260769 ba43ebe 7708ddd 4fa4501 7708ddd 3023ae4 5befd90 c94ba08 45e4726 d51aeae 45e4726 d51aeae 4a303ce 45e4726 d51aeae 45e4726 544275a 45e4726 d51aeae 544275a 45e4726 d51aeae 45e4726 3d0dd11 a5afc1a 0d0c645 83a2e73 0d0c645 83a2e73 0d0c645 83a2e73 0d0c645 adf804d 66c57f6 c0e089e adf804d 66c57f6 c0e089e 66c57f6 0d0c645 83a2e73 0d0c645 83a2e73 0d0c645 83a2e73 0d0c645 83a2e73 0d0c645 a1203ca 7708ddd dc94424 c94ba08 dc94424 c94ba08 dc94424 1acd869 16e89c0 bc641c8 1acd869 107852c 16e89c0 1acd869 16e89c0 dc94424 16e89c0 dc94424 16e89c0 3d0dd11 dc94424 aa8a757 16e89c0 e272fdd 16e89c0 dc94424 16e89c0 dc94424 7274bd3 16e89c0 dc94424 16e89c0 dc94424 16e89c0 dc94424 7274bd3 dc94424 49ebae9 7274bd3 dc94424 7274bd3 16e89c0 dc94424 7274bd3 16e89c0 49ebae9 16e89c0 49ebae9 16e89c0 49ebae9 16e89c0 49ebae9 3d0dd11 0d0c645 83a2e73 e93c659 83a2e73 e93c659 83a2e73 e93c659 83a2e73 0d0c645 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 |
import os
import tiger
import cas9att
import cas9attvcf
import cas9off
import cas12
import cas12lstm
import pandas as pd
import streamlit as st
import plotly.graph_objs as go
import numpy as np
from pathlib import Path
import zipfile
import io
import gtracks
import subprocess
# title and documentation
st.markdown(Path('crisprTool.md').read_text(), unsafe_allow_html=True)
st.divider()
CRISPR_MODELS = ['Cas9', 'Cas12', 'Cas13d']
selected_model = st.selectbox('Select CRISPR model:', CRISPR_MODELS, key='selected_model')
cas9att_path = 'cas9_model/Cas9_MultiHeadAttention_weights.h5'
cas12_path = 'cas12_model/BiLSTM_Cpf1_weights.h5'
#plot functions
def generate_coolbox_plot(bigwig_path, region, output_image_path):
frame = CoolBox()
frame += BigWig(bigwig_path)
frame.plot(region, savefig=output_image_path)
def generate_pygenometracks_plot(bigwig_file_path, region, output_image_path):
# Define the configuration for pyGenomeTracks
tracks = """
[bigwig]
file = {}
height = 4
color = blue
min_value = 0
max_value = 10
""".format(bigwig_file_path)
# Write the configuration to a temporary INI file
config_file_path = "pygenometracks.ini"
with open(config_file_path, 'w') as configfile:
configfile.write(tracks)
# Define the region to plot
region_dict = {'chrom': region.split(':')[0],
'start': int(region.split(':')[1].split('-')[0]),
'end': int(region.split(':')[1].split('-')[1])}
# Generate the plot
plot_tracks(tracks_file=config_file_path,
region=region_dict,
out_file_name=output_image_path)
@st.cache_data
def convert_df(df):
# IMPORTANT: Cache the conversion to prevent computation on every rerun
return df.to_csv().encode('utf-8')
def mode_change_callback():
if st.session_state.mode in {tiger.RUN_MODES['all'], tiger.RUN_MODES['titration']}: # TODO: support titration
st.session_state.check_off_targets = False
st.session_state.disable_off_target_checkbox = True
else:
st.session_state.disable_off_target_checkbox = False
def progress_update(update_text, percent_complete):
with progress.container():
st.write(update_text)
st.progress(percent_complete / 100)
def initiate_run():
# initialize state variables
st.session_state.transcripts = None
st.session_state.input_error = None
st.session_state.on_target = None
st.session_state.titration = None
st.session_state.off_target = None
# initialize transcript DataFrame
transcripts = pd.DataFrame(columns=[tiger.ID_COL, tiger.SEQ_COL])
# manual entry
if st.session_state.entry_method == ENTRY_METHODS['manual']:
transcripts = pd.DataFrame({
tiger.ID_COL: ['ManualEntry'],
tiger.SEQ_COL: [st.session_state.manual_entry]
}).set_index(tiger.ID_COL)
# fasta file upload
elif st.session_state.entry_method == ENTRY_METHODS['fasta']:
if st.session_state.fasta_entry is not None:
fasta_path = st.session_state.fasta_entry.name
with open(fasta_path, 'w') as f:
f.write(st.session_state.fasta_entry.getvalue().decode('utf-8'))
transcripts = tiger.load_transcripts([fasta_path], enforce_unique_ids=False)
os.remove(fasta_path)
# convert to upper case as used by tokenizer
transcripts[tiger.SEQ_COL] = transcripts[tiger.SEQ_COL].apply(lambda s: s.upper().replace('U', 'T'))
# ensure all transcripts have unique identifiers
if transcripts.index.has_duplicates:
st.session_state.input_error = "Duplicate transcript ID's detected in fasta file"
# ensure all transcripts only contain nucleotides A, C, G, T, and wildcard N
elif not all(transcripts[tiger.SEQ_COL].apply(lambda s: set(s).issubset(tiger.NUCLEOTIDE_TOKENS.keys()))):
st.session_state.input_error = 'Transcript(s) must only contain upper or lower case A, C, G, and Ts or Us'
# ensure all transcripts satisfy length requirements
elif any(transcripts[tiger.SEQ_COL].apply(lambda s: len(s) < tiger.TARGET_LEN)):
st.session_state.input_error = 'Transcript(s) must be at least {:d} bases.'.format(tiger.TARGET_LEN)
# run model if we have any transcripts
elif len(transcripts) > 0:
st.session_state.transcripts = transcripts
def parse_gene_annotations(file_path):
gene_dict = {}
with open(file_path, 'r') as file:
headers = file.readline().strip().split('\t') # Assuming tab-delimited file
symbol_idx = headers.index('Approved symbol') # Find index of 'Approved symbol'
ensembl_idx = headers.index('Ensembl gene ID') # Find index of 'Ensembl gene ID'
for line in file:
values = line.strip().split('\t')
# Ensure we have enough values and add mapping from symbol to Ensembl ID
if len(values) > max(symbol_idx, ensembl_idx):
gene_dict[values[symbol_idx]] = values[ensembl_idx]
return gene_dict
# Replace 'your_annotation_file.txt' with the path to your actual gene annotation file
gene_annotations = parse_gene_annotations('Human_genes_HUGO_02242024_annotation.txt')
gene_symbol_list = list(gene_annotations.keys()) # List of gene symbols for the autocomplete feature
# Check if the selected model is Cas9
if selected_model == 'Cas9':
# Use a radio button to select enzymes, making sure only one can be selected at a time
target_selection = st.radio(
"Select either on-target or off-target:",
('on-target', 'off-target'),
key='target_selection'
)
if 'current_gene_symbol' not in st.session_state:
st.session_state['current_gene_symbol'] = ""
# Define a function to clean up old files
def clean_up_old_files(gene_symbol):
genbank_file_path = f"{gene_symbol}_crispr_targets.gb"
bed_file_path = f"{gene_symbol}_crispr_targets.bed"
csv_file_path = f"{gene_symbol}_crispr_predictions.csv"
for path in [genbank_file_path, bed_file_path, csv_file_path]:
if os.path.exists(path):
os.remove(path)
# Gene symbol entry with autocomplete-like feature
gene_symbol = st.selectbox('Enter a Gene Symbol:', [''] + gene_symbol_list, key='gene_symbol',
format_func=lambda x: x if x else "")
# Handle gene symbol change and file cleanup
if gene_symbol != st.session_state['current_gene_symbol'] and gene_symbol:
if st.session_state['current_gene_symbol']:
# Clean up files only if a different gene symbol is entered and a previous symbol exists
clean_up_old_files(st.session_state['current_gene_symbol'])
# Update the session state with the new gene symbol
st.session_state['current_gene_symbol'] = gene_symbol
if target_selection == 'on-target':
# Prediction button
predict_button = st.button('Predict on-target')
if 'exons' not in st.session_state:
st.session_state['exons'] = []
# Process predictions
if predict_button and gene_symbol:
with st.spinner('Predicting... Please wait'):
predictions, gene_sequence, exons = cas9att.process_gene(gene_symbol, cas9att_path)
sorted_predictions = sorted(predictions, key=lambda x: x[8], reverse=True)[:10]
st.session_state['on_target_results'] = sorted_predictions
st.session_state['gene_sequence'] = gene_sequence # Save gene sequence in session state
st.session_state['exons'] = exons # Store exon data
# Notify the user once the process is completed successfully.
st.success('Prediction completed!')
st.session_state['prediction_made'] = True
if 'on_target_results' in st.session_state and st.session_state['on_target_results']:
ensembl_id = gene_annotations.get(gene_symbol, 'Unknown') # Get Ensembl ID or default to 'Unknown'
col1, col2, col3 = st.columns(3)
with col1:
st.markdown("**Genome**")
st.markdown("Homo sapiens")
with col2:
st.markdown("**Gene**")
st.markdown(f"{gene_symbol} : {ensembl_id} (primary)")
with col3:
st.markdown("**Nuclease**")
st.markdown("SpCas9")
# Include "Target" in the DataFrame's columns
try:
df = pd.DataFrame(st.session_state['on_target_results'],
columns=["Chr", "Start Pos", "End Pos", "Strand", "Transcript", "Exon", "Target", "gRNA", "Prediction"])
st.dataframe(df)
except ValueError as e:
st.error(f"DataFrame creation error: {e}")
# Optionally print or log the problematic data for debugging:
print(st.session_state['on_target_results'])
# Initialize Plotly figure
fig = go.Figure()
EXON_BASE = 0 # Base position for exons and CDS on the Y axis
EXON_HEIGHT = 0.02 # How 'tall' the exon markers should appear
# Plot Exons as small markers on the X-axis
for exon in st.session_state['exons']:
exon_start, exon_end = exon['start'], exon['end']
fig.add_trace(go.Bar(
x=[(exon_start + exon_end) / 2],
y=[EXON_HEIGHT],
width=[exon_end - exon_start],
base=EXON_BASE,
marker_color='rgba(128, 0, 128, 0.5)',
name='Exon'
))
VERTICAL_GAP = 0.2 # Gap between different ranks
# Define max and min Y values based on strand and rank
MAX_STRAND_Y = 0.1 # Maximum Y value for positive strand results
MIN_STRAND_Y = -0.1 # Minimum Y value for negative strand results
# Iterate over top 5 sorted predictions to create the plot
for i, prediction in enumerate(st.session_state['on_target_results'][:5], start=1): # Only top 5
chrom, start, end, strand, transcript, exon, target, gRNA, prediction_score = prediction
midpoint = (int(start) + int(end)) / 2
# Vertical position based on rank, modified by strand
y_value = (MAX_STRAND_Y - (i - 1) * VERTICAL_GAP) if strand == '1' or strand == '+' else (
MIN_STRAND_Y + (i - 1) * VERTICAL_GAP)
fig.add_trace(go.Scatter(
x=[midpoint],
y=[y_value],
mode='markers+text',
marker=dict(symbol='triangle-up' if strand == '1' or strand == '+' else 'triangle-down',
size=12),
text=f"Rank: {i}", # Text label
hoverinfo='text',
hovertext=f"Rank: {i}<br>Chromosome: {chrom}<br>Target Sequence: {target}<br>gRNA: {gRNA}<br>Start: {start}<br>End: {end}<br>Strand: {'+' if strand == '1' or strand == '+' else '-'}<br>Transcript: {transcript}<br>Prediction: {prediction_score:.4f}",
))
# Update layout for clarity and interaction
fig.update_layout(
title='Top 5 gRNA Sequences by Prediction Score',
xaxis_title='Genomic Position',
yaxis_title='Strand',
yaxis=dict(tickvals=[MAX_STRAND_Y, MIN_STRAND_Y], ticktext=['+', '-']),
showlegend=False,
hovermode='x unified',
)
# Display the plot
st.plotly_chart(fig)
if 'gene_sequence' in st.session_state and st.session_state['gene_sequence']:
gene_symbol = st.session_state['current_gene_symbol']
gene_sequence = st.session_state['gene_sequence']
# Define file paths
genbank_file_path = f"{gene_symbol}_crispr_targets.gb"
bed_file_path = f"{gene_symbol}_crispr_targets.bed"
csv_file_path = f"{gene_symbol}_crispr_predictions.csv"
plot_image_path = f"{gene_symbol}_gtracks_plot.png"
# Generate files
cas9att.generate_genbank_file_from_df(df, gene_sequence, gene_symbol, genbank_file_path)
cas9att.create_bed_file_from_df(df, bed_file_path)
cas9att.create_csv_from_df(df, csv_file_path)
# Prepare an in-memory buffer for the ZIP file
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
# For each file, add it to the ZIP file
zip_file.write(genbank_file_path)
zip_file.write(bed_file_path)
zip_file.write(csv_file_path)
# Important: move the cursor to the beginning of the BytesIO buffer before reading it
zip_buffer.seek(0)
# Specify the region you want to visualize
min_start = df['Start Pos'].min()
max_end = df['End Pos'].max()
chromosome = df['Chr'].mode()[0] # Assumes most common chromosome is the target
region = f"{chromosome}:{min_start}-{max_end}"
# Generate the pyGenomeTracks plot
gtracks_command = f"gtracks {region} {bed_file_path} {plot_image_path}"
subprocess.run(gtracks_command, shell=True)
st.image(plot_image_path)
# Display the download button for the ZIP file
st.download_button(
label="Download GenBank, BED, CSV files as ZIP",
data=zip_buffer.getvalue(),
file_name=f"{gene_symbol}_files.zip",
mime="application/zip"
)
elif target_selection == 'off-target':
ENTRY_METHODS = dict(
manual='Manual entry of target sequence',
txt="txt file upload"
)
if __name__ == '__main__':
# app initialization for Cas9 off-target
if 'target_sequence' not in st.session_state:
st.session_state.target_sequence = None
if 'input_error' not in st.session_state:
st.session_state.input_error = None
if 'off_target_results' not in st.session_state:
st.session_state.off_target_results = None
# target sequence entry
st.selectbox(
label='How would you like to provide target sequences?',
options=ENTRY_METHODS.values(),
key='entry_method',
disabled=st.session_state.target_sequence is not None
)
if st.session_state.entry_method == ENTRY_METHODS['manual']:
st.text_input(
label='Enter on/off sequences:',
key='manual_entry',
placeholder='Enter on/off sequences like:GGGTGGGGGGAGTTTGCTCCAGG,AGGTGGGGTGA_TTTGCTCCAGG',
disabled=st.session_state.target_sequence is not None
)
elif st.session_state.entry_method == ENTRY_METHODS['txt']:
st.file_uploader(
label='Upload a txt file:',
key='txt_entry',
disabled=st.session_state.target_sequence is not None
)
# prediction button
if st.button('Predict off-target'):
if st.session_state.entry_method == ENTRY_METHODS['manual']:
user_input = st.session_state.manual_entry
if user_input: # Check if user_input is not empty
predictions = cas9off.process_input_and_predict(user_input, input_type='manual')
elif st.session_state.entry_method == ENTRY_METHODS['txt']:
uploaded_file = st.session_state.txt_entry
if uploaded_file is not None:
# Read the uploaded file content
file_content = uploaded_file.getvalue().decode("utf-8")
predictions = cas9off.process_input_and_predict(file_content, input_type='manual')
st.session_state.off_target_results = predictions
else:
predictions = None
progress = st.empty()
# input error display
error = st.empty()
if st.session_state.input_error is not None:
error.error(st.session_state.input_error, icon="🚨")
else:
error.empty()
# off-target results display
off_target_results = st.empty()
if st.session_state.off_target_results is not None:
with off_target_results.container():
if len(st.session_state.off_target_results) > 0:
st.write('Off-target predictions:', st.session_state.off_target_results)
st.download_button(
label='Download off-target predictions',
data=convert_df(st.session_state.off_target_results),
file_name='off_target_results.csv',
mime='text/csv'
)
else:
st.write('No significant off-target effects detected!')
else:
off_target_results.empty()
# running the CRISPR-Net model for off-target predictions
if st.session_state.target_sequence is not None:
st.session_state.off_target_results = cas9off.predict_off_targets(
target_sequence=st.session_state.target_sequence,
status_update_fn=progress_update
)
st.session_state.target_sequence = None
st.experimental_rerun()
elif selected_model == 'Cas12':
# Gene symbol entry with autocomplete-like feature
gene_symbol = st.selectbox('Enter a Gene Symbol:', [''] + gene_symbol_list, key='gene_symbol',
format_func=lambda x: x if x else "")
# Initialize the current_gene_symbol in the session state if it doesn't exist
if 'current_gene_symbol' not in st.session_state:
st.session_state['current_gene_symbol'] = ""
# Prediction button
predict_button = st.button('Predict on-target')
# Function to clean up old files
def clean_up_old_files(gene_symbol):
genbank_file_path = f"{gene_symbol}_crispr_targets.gb"
bed_file_path = f"{gene_symbol}_crispr_targets.bed"
csv_file_path = f"{gene_symbol}_crispr_predictions.csv"
for path in [genbank_file_path, bed_file_path, csv_file_path]:
if os.path.exists(path):
os.remove(path)
# Clean up files if a new gene symbol is entered
if st.session_state['current_gene_symbol'] and gene_symbol != st.session_state['current_gene_symbol']:
clean_up_old_files(st.session_state['current_gene_symbol'])
# Process predictions
if predict_button and gene_symbol:
with st.spinner('Predicting... Please wait'):
predictions, gene_sequence, exons = cas12lstm.process_gene(gene_symbol, cas9att_path)
sorted_predictions = sorted(predictions, key=lambda x: x[8], reverse=True)[:10]
st.session_state['on_target_results'] = sorted_predictions
st.session_state['gene_sequence'] = gene_sequence # Save gene sequence in session state
st.session_state['exons'] = exons # Store exon data
# Notify the user once the process is completed successfully.
st.success('Prediction completed!')
st.session_state['prediction_made'] = True
if 'on_target_results' in st.session_state and st.session_state['on_target_results']:
ensembl_id = gene_annotations.get(gene_symbol, 'Unknown') # Get Ensembl ID or default to 'Unknown'
col1, col2, col3 = st.columns(3)
with col1:
st.markdown("**Genome**")
st.markdown("Homo sapiens")
with col2:
st.markdown("**Gene**")
st.markdown(f"{gene_symbol} : {ensembl_id} (primary)")
with col3:
st.markdown("**Nuclease**")
st.markdown("SpCas9")
# Include "Target" in the DataFrame's columns
try:
df = pd.DataFrame(st.session_state['on_target_results'],
columns=["Chr", "Start Pos", "End Pos", "Strand", "Transcript", "Exon", "Target",
"gRNA", "Prediction"])
st.dataframe(df)
except ValueError as e:
st.error(f"DataFrame creation error: {e}")
# Optionally print or log the problematic data for debugging:
print(st.session_state['on_target_results'])
# Initialize Plotly figure
fig = go.Figure()
EXON_BASE = 0 # Base position for exons and CDS on the Y axis
EXON_HEIGHT = 0.02 # How 'tall' the exon markers should appear
# Plot Exons as small markers on the X-axis
for exon in st.session_state['exons']:
exon_start, exon_end = exon['start'], exon['end']
fig.add_trace(go.Bar(
x=[(exon_start + exon_end) / 2],
y=[EXON_HEIGHT],
width=[exon_end - exon_start],
base=EXON_BASE,
marker_color='rgba(128, 0, 128, 0.5)',
name='Exon'
))
VERTICAL_GAP = 0.2 # Gap between different ranks
# Define max and min Y values based on strand and rank
MAX_STRAND_Y = 0.1 # Maximum Y value for positive strand results
MIN_STRAND_Y = -0.1 # Minimum Y value for negative strand results
# Iterate over top 5 sorted predictions to create the plot
for i, prediction in enumerate(st.session_state['on_target_results'][:5], start=1): # Only top 5
chrom, start, end, strand, transcript, exon, target, gRNA, prediction_score = prediction
midpoint = (int(start) + int(end)) / 2
# Vertical position based on rank, modified by strand
y_value = (MAX_STRAND_Y - (i - 1) * VERTICAL_GAP) if strand == '1' or strand == '+' else (
MIN_STRAND_Y + (i - 1) * VERTICAL_GAP)
fig.add_trace(go.Scatter(
x=[midpoint],
y=[y_value],
mode='markers+text',
marker=dict(symbol='triangle-up' if strand == '1' or strand == '+' else 'triangle-down',
size=12),
text=f"Rank: {i}", # Text label
hoverinfo='text',
hovertext=f"Rank: {i}<br>Chromosome: {chrom}<br>Target Sequence: {target}<br>gRNA: {gRNA}<br>Start: {start}<br>End: {end}<br>Strand: {'+' if strand == '1' or strand == '+' else '-'}<br>Transcript: {transcript}<br>Prediction: {prediction_score:.4f}",
))
# Update layout for clarity and interaction
fig.update_layout(
title='Top 5 gRNA Sequences by Prediction Score',
xaxis_title='Genomic Position',
yaxis_title='Strand',
yaxis=dict(tickvals=[MAX_STRAND_Y, MIN_STRAND_Y], ticktext=['+', '-']),
showlegend=False,
hovermode='x unified',
)
# Display the plot
st.plotly_chart(fig)
if 'gene_sequence' in st.session_state and st.session_state['gene_sequence']:
gene_symbol = st.session_state['current_gene_symbol']
gene_sequence = st.session_state['gene_sequence']
# Define file paths
genbank_file_path = f"{gene_symbol}_crispr_targets.gb"
bed_file_path = f"{gene_symbol}_crispr_targets.bed"
csv_file_path = f"{gene_symbol}_crispr_predictions.csv"
plot_image_path = f"{gene_symbol}_gtracks_plot.png"
# Generate files
cas12lstm.generate_genbank_file_from_df(df, gene_sequence, gene_symbol, genbank_file_path)
cas12lstm.create_bed_file_from_df(df, bed_file_path)
cas12lstm.create_csv_from_df(df, csv_file_path)
# Prepare an in-memory buffer for the ZIP file
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
# For each file, add it to the ZIP file
zip_file.write(genbank_file_path)
zip_file.write(bed_file_path)
zip_file.write(csv_file_path)
# Important: move the cursor to the beginning of the BytesIO buffer before reading it
zip_buffer.seek(0)
# Specify the region you want to visualize
min_start = df['Start Pos'].min()
max_end = df['End Pos'].max()
chromosome = df['Chr'].mode()[0] # Assumes most common chromosome is the target
region = f"{chromosome}:{min_start}-{max_end}"
# Generate the pyGenomeTracks plot
gtracks_command = f"gtracks {region} {bed_file_path} {plot_image_path}"
subprocess.run(gtracks_command, shell=True)
st.image(plot_image_path)
# Display the download button for the ZIP file
st.download_button(
label="Download GenBank, BED, CSV files as ZIP",
data=zip_buffer.getvalue(),
file_name=f"{gene_symbol}_files.zip",
mime="application/zip"
)
elif selected_model == 'Cas13d':
ENTRY_METHODS = dict(
manual='Manual entry of single transcript',
fasta="Fasta file upload (supports multiple transcripts if they have unique ID's)"
)
if __name__ == '__main__':
# app initialization
if 'mode' not in st.session_state:
st.session_state.mode = tiger.RUN_MODES['all']
st.session_state.disable_off_target_checkbox = True
if 'entry_method' not in st.session_state:
st.session_state.entry_method = ENTRY_METHODS['manual']
if 'transcripts' not in st.session_state:
st.session_state.transcripts = None
if 'input_error' not in st.session_state:
st.session_state.input_error = None
if 'on_target' not in st.session_state:
st.session_state.on_target = None
if 'titration' not in st.session_state:
st.session_state.titration = None
if 'off_target' not in st.session_state:
st.session_state.off_target = None
# mode selection
col1, col2 = st.columns([0.65, 0.35])
with col1:
st.radio(
label='What do you want to predict?',
options=tuple(tiger.RUN_MODES.values()),
key='mode',
on_change=mode_change_callback,
disabled=st.session_state.transcripts is not None,
)
with col2:
st.checkbox(
label='Find off-target effects (slow)',
key='check_off_targets',
disabled=st.session_state.disable_off_target_checkbox or st.session_state.transcripts is not None
)
# transcript entry
st.selectbox(
label='How would you like to provide transcript(s) of interest?',
options=ENTRY_METHODS.values(),
key='entry_method',
disabled=st.session_state.transcripts is not None
)
if st.session_state.entry_method == ENTRY_METHODS['manual']:
st.text_input(
label='Enter a target transcript:',
key='manual_entry',
placeholder='Upper or lower case',
disabled=st.session_state.transcripts is not None
)
elif st.session_state.entry_method == ENTRY_METHODS['fasta']:
st.file_uploader(
label='Upload a fasta file:',
key='fasta_entry',
disabled=st.session_state.transcripts is not None
)
# let's go!
st.button(label='Get predictions!', on_click=initiate_run, disabled=st.session_state.transcripts is not None)
progress = st.empty()
# input error
error = st.empty()
if st.session_state.input_error is not None:
error.error(st.session_state.input_error, icon="🚨")
else:
error.empty()
# on-target results
on_target_results = st.empty()
if st.session_state.on_target is not None:
with on_target_results.container():
st.write('On-target predictions:', st.session_state.on_target)
st.download_button(
label='Download on-target predictions',
data=convert_df(st.session_state.on_target),
file_name='on_target.csv',
mime='text/csv'
)
else:
on_target_results.empty()
# titration results
titration_results = st.empty()
if st.session_state.titration is not None:
with titration_results.container():
st.write('Titration predictions:', st.session_state.titration)
st.download_button(
label='Download titration predictions',
data=convert_df(st.session_state.titration),
file_name='titration.csv',
mime='text/csv'
)
else:
titration_results.empty()
# off-target results
off_target_results = st.empty()
if st.session_state.off_target is not None:
with off_target_results.container():
if len(st.session_state.off_target) > 0:
st.write('Off-target predictions:', st.session_state.off_target)
st.download_button(
label='Download off-target predictions',
data=convert_df(st.session_state.off_target),
file_name='off_target.csv',
mime='text/csv'
)
else:
st.write('We did not find any off-target effects!')
else:
off_target_results.empty()
# keep trying to run model until we clear inputs (streamlit UI changes can induce race-condition reruns)
if st.session_state.transcripts is not None:
st.session_state.on_target, st.session_state.titration, st.session_state.off_target = tiger.tiger_exhibit(
transcripts=st.session_state.transcripts,
mode={v: k for k, v in tiger.RUN_MODES.items()}[st.session_state.mode],
check_off_targets=st.session_state.check_off_targets,
status_update_fn=progress_update
)
st.session_state.transcripts = None
st.experimental_rerun()
|