Spaces:
Running
Running
File size: 2,625 Bytes
0f7e74b fee4ed8 0f7e74b fee4ed8 0f7e74b 047d5b0 8dd6822 45f8c23 047d5b0 cc65489 13e77a1 6fd8316 45f8c23 047d5b0 73bea8b b4a533c 62fbd16 6b42839 047d5b0 29401a0 fa64131 22b8a05 76c42c2 d49d91f 9cedd16 d49d91f 76c42c2 d49d91f 76c42c2 a587147 047d5b0 88c1db0 62fbd16 aad65ce d862984 aad65ce 49572dd aad65ce 49572dd aad65ce 49572dd aad65ce 49572dd aad65ce d49d91f 49572dd 6fd8316 d49d91f 88c1db0 0f7e74b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
import streamlit as st
from transformers import pipeline
from PIL import Image
from datasets import load_dataset, Image, list_datasets
from PIL import Image
MODELS = [
"google/vit-base-patch16-224", #Classifição geral
"nateraw/vit-age-classifier", #Classifição de idade
"Nunt/backup_leonardo_2024-02-06"
]
DATASETS = [
"Nunt/testedata",
"Nunt/backup_leonardo"
]
MAX_N_LABELS = 5
SPLIT_TO_CLASSIFY = 'pasta'
COLS = st.columns([0.75, 0.25])
SCROLLABLE_TEXT = COLS[1].container(height=500)
def classify_full_dataset(shosen_dataset_name, chosen_model_name):
image_count = 0
#modle instance
classifier_pipeline = pipeline('image-classification', model=chosen_model_name)
#dataset
dataset = load_dataset(shosen_dataset_name,"testedata_readme")
for i in range(len(dataset)):
SCROLLABLE_TEXT.write("i-1:" + str(i-1))
image_object = dataset['pasta'][i-1]["image"]
SCROLLABLE_TEXT.image(image_object, caption="Uploaded Image", width=300)
#classification
classification_result = classifier_pipeline(image_object)
SCROLLABLE_TEXT.write(classification_result)
#TODO save classification result in dataset
image_count += 1
SCROLLABLE_TEXT.write(f"Image count" + str(image_count))
#SCROLLABLE_TEXT.write(image_count)
def main():
COLS[0].write("# Bulk Image Classification App")
#with CONTAINER_BODY:
with COLS[0]:
st.markdown("This app uses several 🤗 models to classify images stored in 🤗 datasets.")
st.write("Soon we will have a dataset template")
#Model
chosen_model_name = COLS[0].selectbox("Select the model to use", MODELS, index=0)
if chosen_model_name is not None:
COLS[0].write("You selected")
COLS[0].write(chosen_model_name)
#Dataset
shosen_dataset_name = COLS[0].selectbox("Select the dataset to use", DATASETS, index=0)
if shosen_dataset_name is not None:
COLS[0].write("You selected")
COLS[0].write(shosen_dataset_name)
#click to classify
if chosen_model_name is not None and shosen_dataset_name is not None:
if COLS[0].button("Classify images"):
classify_full_dataset(shosen_dataset_name, chosen_model_name)
COLS[0].write("Classification result {classification_result}")
COLS[0].write("--- END ---")
#COLS[0].write(classification_result)
if __name__ == "__main__":
main() |