Spaces:
Runtime error
Runtime error
File size: 86,947 Bytes
5edac6d 141ce89 5edac6d 32f9e57 5edac6d 541f9cd 5edac6d d3ca070 7c3ceb1 5747010 32f9e57 dd10a48 32f9e57 3184c71 9ed883a d90b6b8 702d11f d421a6e 5edac6d 141ce89 5edac6d ed94ada 5edac6d 1a80a66 5edac6d ada5c0c 5edac6d 702d11f 1f72e50 b874666 f7bfe98 b874666 1c365c7 233aef1 9d0e9c8 ce5b544 5dcf83f 9d0e9c8 cd2a3be d84903c 4928a16 e78d7c7 4928a16 b42a9db 9a3cbb5 b42a9db 8c3f4a5 141ce89 1185f58 141ce89 089ac30 141ce89 089ac30 71d36d1 467f3aa aeb7722 dd6dc02 089ac30 141ce89 71d36d1 141ce89 6532dec 9a3cbb5 2b853f2 00a39ef 2b853f2 b42a9db 9a3cbb5 b42a9db 1ea45cf b42a9db 1ea45cf b3b9b76 858f874 b42a9db 9a3cbb5 cb01cad 1ea45cf b42a9db cb01cad b42a9db 8a20586 59f14fa b42a9db 4928a16 b3b9b76 d84903c 4cc267c 9d0e9c8 0e213a6 9d0e9c8 d0d56b0 9d0e9c8 4cc267c 9d0e9c8 21842d6 9d0e9c8 1b59e3b 927ba81 1b59e3b ce5b544 5dcf83f 1b59e3b 5dcf83f 21842d6 9d0e9c8 f93be97 a732d4f d84903c f93be97 d84903c a732d4f d84903c 4cc267c b874666 d0fdfbe b874666 d0fdfbe b874666 e34124f 45e0238 3f81762 17ca76c 89d8a08 46f4c4b 9674fb9 17ca76c f10bbaf e5883f8 219b587 a8f1d79 46f4c4b 585f92d 46f4c4b 9a3cbb5 2bd5e1f 9a3cbb5 8c3f4a5 ba1c986 af1e847 ba1c986 af1e847 ba1c986 8c3f4a5 ba1c986 8c3f4a5 46f4c4b f10bbaf b874666 bb0c9ca 1c365c7 9674fb9 e7ffcdd 1ddf125 45e0238 b874666 d0fdfbe 4dee166 f7bfe98 e0a4089 233aef1 1f72e50 e0e9602 233aef1 e0e9602 1f72e50 2bd6776 1f72e50 90bffa6 8cc4d36 2bd6776 b61570d 1f72e50 8cc4d36 1f72e50 f5f3d9d 1f72e50 2bd6776 1f72e50 233aef1 e78d7c7 0db1cb0 e78d7c7 2d0e444 f7bfe98 8cc4d36 4b5c5e3 2b6080b 1f72e50 2b6080b 1f72e50 4b5c5e3 1f72e50 f43eb18 691b17c 5edac6d 702d11f 7154eab e5f673c 7154eab dc66c9a be19420 7c3ceb1 8a383d3 32f9e57 5edac6d 1a80a66 5edac6d 73f1d5f e5f673c 5edac6d e5f673c a331c7b ff0411d a331c7b 5edac6d 66d2fc7 0ded0b0 66d2fc7 5edac6d fdba7fc 5edac6d 73f1d5f 5edac6d 73f1d5f 5edac6d fdba7fc 5edac6d ca0a8d3 ada5c0c ca0a8d3 5edac6d d43825c 5edac6d d43825c 5edac6d bcfb892 858f874 d8a62af 914a721 dd10a48 7da2edb 9a3cbb5 dd10a48 ca0a8d3 dd10a48 e25f3f3 dd10a48 9a3cbb5 7da2edb dd10a48 e25f3f3 dd10a48 e25f3f3 dd10a48 5edac6d ccf3df7 87aeca0 5edac6d 860b20f fbf6894 860b20f 9ed883a f62a7d4 32f0c73 f62a7d4 ae6b6a0 f62a7d4 ae6b6a0 9ed883a d90b6b8 8eca13f d90b6b8 93d657b d90b6b8 0952397 a331c7b d90b6b8 0952397 d90b6b8 3189246 454ef36 e5f673c 454ef36 96a8500 1212925 ccec0f4 5cea955 d90b6b8 fce2699 454ef36 fce2699 b87aac4 f38cdce 53aaa23 b87aac4 fce2699 9ed883a ccf3df7 454ef36 9ed883a 5edac6d 860b20f 87c1054 d84903c 87c1054 860b20f 5edac6d 56fd6e3 5edac6d 56fd6e3 5edac6d 56fd6e3 5edac6d 1757d87 5edac6d 860b20f f550527 860b20f 1757d87 860b20f 858f874 891dd71 858f874 860b20f 5edac6d 32f0c73 5cc514e 32f0c73 5edac6d 7206363 5edac6d 32f0c73 5edac6d 4dee166 235a43e 4dee166 235a43e 5edac6d 3b25af6 5edac6d 3b25af6 860b20f ebe38e7 5edac6d 860b20f 858f874 3b25af6 5edac6d 4dee166 2b391b7 af5e898 4dee166 2b391b7 4dee166 5edac6d 130d120 5edac6d 32f0c73 2b391b7 5edac6d 2b391b7 d43825c 2b391b7 5edac6d 2b391b7 5edac6d 2e6d65c 9ef9d5a 5edac6d 9ed883a 5edac6d 2e6d65c d1b54e9 45c3baa 6a0d0d0 d1b54e9 02a524a 0d29a46 2e6d65c 4a9eea6 8bb0a31 891dd71 53fb87e 591c00d 53fb87e 35b9b9e 53fb87e 891dd71 e5f673c 891dd71 e5f673c 891dd71 53fb87e 891dd71 5edac6d 8cc4d36 e7ffcdd 8cc4d36 e7ffcdd 8cc4d36 433f5fe a09b48b 45db887 433f5fe 5e19412 606185f 4a9eea6 1195ec7 606185f 4a9eea6 1195ec7 5e19412 4a9eea6 247e008 5e19412 4a9eea6 606185f 45db887 38fd0ef 261d763 0bb65ea 52cc181 0bb65ea 52cc181 0bb65ea 52cc181 0bb65ea 261d763 a2efb40 0bb65ea 52cc181 0bb65ea 52cc181 0bb65ea 52cc181 0bb65ea 261d763 52cc181 0237f9a 5eb43d6 21c6a29 433f5fe 5edac6d 5e19412 38e525d 5e19412 416fc4a 38e525d fc18035 ae678bc fc18035 ae678bc 608896e fc18035 97419ef a844ec1 5d40f7a a844ec1 97419ef 2a23b6c 6234322 2a23b6c c5a073b 2a23b6c 97419ef a844ec1 32f9e57 a844ec1 608896e 32f9e57 e4cdf4d e5f673c 235a43e 860b20f 45c3baa ac9ad2c 5edac6d 32f0c73 5edac6d 36b2f88 e4cdf4d 65d9d5b e4cdf4d 5120a66 e4cdf4d 36b2f88 be68c2c 5edac6d 3b25af6 235a43e e059fdb 235a43e 8bb0a31 45db887 d219a35 adf8ad4 e059fdb 235a43e d8a62af 7154eab d8a62af 891dd71 52cc181 41afa9b e5f673c d8a62af 858f874 bcfb892 235a43e 5747010 c06dab4 32f9e57 0e3b32d b4e8d18 ddf6d4e 32f9e57 860b20f c06dab4 32f9e57 ddf6d4e 32f9e57 d4efa5b 914a721 32f9e57 103546a 860b20f 103546a dc66c9a 103546a 32f0c73 103546a 32f9e57 c06dab4 3b25af6 c06dab4 32f9e57 dc66c9a 32f9e57 32f0c73 32f9e57 d4efa5b 914a721 32f9e57 6532dec e90de0c 1357aec 9a3cbb5 1357aec bcfb892 858f874 d8a62af 9a3cbb5 d8a62af 858f874 1357aec 76bc1a2 32f0c73 1357aec c06dab4 235a43e 262ef94 5747010 e90de0c b309c40 d3ca070 5edac6d 32f9e57 5edac6d e81a698 5edac6d e81a698 5edac6d a331c7b 5edac6d 97582ea 5bf7302 675cfe9 42e0044 1bc0c07 5bf7302 881af9d 0d29a46 d349042 881af9d 97582ea 881af9d 5edac6d e81a698 73f1d5f c184879 12e63ff c184879 73f1d5f 66d2fc7 adce112 e81a698 32f0c73 adce112 66d2fc7 e81a698 5edac6d dd10a48 e5f673c 59891c7 d421a6e 1357aec 76bc1a2 36e015f 1d3b1f7 36e015f 1d3b1f7 36e015f 1d3b1f7 36e015f 1d3b1f7 36e015f 990cad9 e81a698 8a383d3 ff0411d 1357aec f19ad30 4101c27 8a383d3 f19ad30 51af174 1357aec e5f673c 1357aec 51af174 f19ad30 51af174 cd2a3be 247e008 f19ad30 247e008 f19ad30 247e008 732d2d6 51af174 f19ad30 4101c27 29844b7 cd2a3be 247e008 cd2a3be 23742ac cd2a3be af1e847 247e008 cd2a3be 247e008 af1e847 fe8f569 af1e847 fe8f569 af1e847 fe8f569 af1e847 fe8f569 af1e847 247e008 979b5c4 247e008 cd2a3be 29844b7 1357aec f19ad30 29844b7 1357aec 29844b7 f19ad30 39c814c 29844b7 1357aec 141ce89 e5f673c 141ce89 1357aec 29844b7 f19ad30 141ce89 37c0f23 141ce89 e8be56f 141ce89 675fa08 141ce89 675fa08 141ce89 39c814c 29844b7 979b5c4 29844b7 cd2a3be 979b5c4 f19ad30 979b5c4 f19ad30 979b5c4 732d2d6 979b5c4 29844b7 ad9c00b 8ff0718 29844b7 1357aec f19ad30 29844b7 141ce89 2d0e444 ad9c00b 2d0e444 ad9c00b 2d0e444 ad9c00b 2d0e444 ad9c00b 2d0e444 ad9c00b 2d0e444 ad9c00b 2d0e444 ad9c00b 2d0e444 ad9c00b b85e015 e81a698 86677df 990cad9 be19420 3b29a44 af1e847 0d6e48c 3b29a44 af1e847 3b29a44 c95d0d3 31b53f0 6bcd061 84b12cb be19420 e81a698 8a383d3 584ba32 8a383d3 24f1cbd e81a698 24f1cbd 6797e2d 24f1cbd e81a698 24f1cbd e81a698 c68e8a7 24f1cbd 584ba32 24f1cbd 6797e2d 24f1cbd 699c648 4938fd8 dd27da8 4938fd8 ad276ce 6c448c0 ff0411d 1f4422f 1dfbc55 31b53f0 93eb493 19bc884 93eb493 ddae241 57476cc 3744ac2 359c2b8 3744ac2 6c448c0 ed94ada bd571b5 ed94ada 6c448c0 a30b66b 6c448c0 1dfbc55 798f846 28585d6 153e8b3 3a91f8d 28585d6 ada225d a46f21b 1d1fa7f 691b17c 199fdd9 4ce79fb ada225d cce1770 3dba961 267deca 3dba961 e5f673c 3dba961 e5f673c 3dba961 267deca 3dba961 cce1770 6a60cd9 f19ad30 6a60cd9 f65f35d b87aac4 24cf03b f65f35d b450bc8 11bb6c0 24cf03b 11bb6c0 b87aac4 f65f35d f38cdce f65f35d 584ba32 1d1fa7f f65f35d febac0d b87aac4 d9e36f7 835be01 1e3d783 f2acce5 dd099e7 00a39ef f2acce5 25a6d74 3dba961 f10a15b 5546b26 e5f673c 3457317 aa36fe2 3457317 febac0d f10a15b e5f673c 4101c27 ab60cf4 798f846 1bc0c07 4ebc48f 52f7098 4ebc48f a208a32 b924e22 16ef1ca f03195a 408e795 4ebc48f ad0bfa9 24f1cbd ad0bfa9 4ebc48f 9d34141 ad0bfa9 cdaa527 28026f6 4ebc48f 28026f6 250dec4 ad9c00b d43825c ad9c00b e5f673c 1e3d783 febac0d 6c448c0 9be3d38 2f0bcb7 36aeae9 7a3944e c620be9 141ce89 bde0098 1de54db 569bae0 2d0e444 c620be9 2d0e444 dc2754c 1de54db 569bae0 ad9c00b 7b401d5 5200c8d 1de54db 7b401d5 5546b26 ca0a8d3 2255560 28026f6 1de54db 3a7d53a 1ae02b6 153e8b3 4df10d7 ecc6c2f 4df10d7 153e8b3 28026f6 f19ad30 c00437f cce1770 3cbbc42 cce1770 d421a6e 5edac6d 43408d7 0e3b32d 9a3cbb5 5edac6d 32f0c73 5edac6d 0e3b32d 9a3cbb5 3b25af6 43408d7 3b25af6 43408d7 5edac6d 97419ef 5edac6d 97419ef 5edac6d 97419ef 5edac6d 32f9e57 5edac6d c7d7bda 5edac6d 233aef1 06105c0 4928a16 f752db1 d43825c c7d7bda 5edac6d 1f72e50 5edac6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 |
# from typing import Any, Coroutine
from uuid import UUID
from langchain.schema.agent import AgentAction, AgentFinish
import openai
import os
# from langchain.vectorstores import Chroma
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.chat_models import AzureChatOpenAI
from langchain.document_loaders import DirectoryLoader
from langchain.chains import RetrievalQA
# from langchain.vectorstores import Pinecone
from langchain.vectorstores.pinecone import Pinecone
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.agents import Tool
# from langchain.agents import load_tools
from langchain.tools import BaseTool
from langchain.tools import DuckDuckGoSearchRun
from langchain.utilities import WikipediaAPIWrapper
from langchain.python import PythonREPL
from langchain.chains import LLMMathChain
from langchain.memory import ConversationBufferMemory
from langchain.memory import ConversationBufferWindowMemory
from langchain.agents import ZeroShotAgent, AgentExecutor
from langchain.agents import OpenAIMultiFunctionsAgent
from langchain.prompts import MessagesPlaceholder
from langchain.chains.summarize import load_summarize_chain
from langchain.schema.messages import (
AIMessage,
BaseMessage,
FunctionMessage,
SystemMessage,
)
# from langchain import LLMChain
from langchain.chains import LLMChain
import azure.cognitiveservices.speech as speechsdk
import requests
import sys
import pinecone
from pinecone.core.client.configuration import Configuration as OpenApiConfiguration
import gradio as gr
import time
import glob
from typing import Any, Dict, List, Mapping, Optional
from multiprocessing import Pool
from tqdm import tqdm
from pygame import mixer
from langchain.document_loaders import (
CSVLoader,
EverNoteLoader,
PyMuPDFLoader,
TextLoader,
UnstructuredEmailLoader,
UnstructuredEPubLoader,
UnstructuredHTMLLoader,
UnstructuredMarkdownLoader,
UnstructuredODTLoader,
UnstructuredPowerPointLoader,
UnstructuredWordDocumentLoader,
UnstructuredExcelLoader
)
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.text_splitter import TokenTextSplitter
from langchain.docstore.document import Document
import langchain
import asyncio
from playwright.async_api import async_playwright
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.llms.base import LLM
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.schema import (
Generation,
LLMResult
)
import time
from datasets import load_dataset
from transformers import pipeline
import soundfile as sf
from scipy.io import wavfile
import re
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
import torch
from codeinterpreterapi import CodeInterpreterSession
import html2text
from interpreter.code_interpreter import CodeInterpreter
# from interpreter.code_block import CodeBlock
import regex
from langchain.callbacks.base import BaseCallbackHandler
from collections.abc import Generator
from queue import Queue, Empty
from threading import Thread
class QueueCallback(BaseCallbackHandler):
"""Callback handler for streaming LLM responses to a queue."""
def __init__(self, q):
self.q = q
def on_llm_new_token(self, token: str, **kwargs: any) -> None:
self.q.put(token)
def on_agent_finish(self, finish: AgentFinish, *, run_id: UUID, parent_run_id: UUID | None = None, **kwargs: Any) -> Any:
self.q.put(super().on_agent_finish(finish, run_id=run_id, parent_run_id=parent_run_id, **kwargs))
def on_agent_action(self, action: AgentAction, *, run_id: UUID, parent_run_id: UUID | None = None, **kwargs: Any) -> Any:
self.q.put(super().on_agent_action(action, run_id=run_id, parent_run_id=parent_run_id, **kwargs))
def on_llm_end(self, *args, **kwargs: any) -> None:
return self.q.empty()
def stream(input_text) -> Generator:
# Create a Queue
q = Queue()
job_done = object()
# Create a funciton to call - this will run in a thread
def task():
resp = agent.run(input_text, callbacks=[QueueCallback(q)])
q.put(job_done)
# Create a thread and start the function
t = Thread(target=task)
t.start()
content = ""
# Get each new token from the queue and yield for our generator
counter = 0
while True:
try:
next_token = q.get(True, timeout=60)
print("next_token: ", str(next_token))
if next_token == None:
next_token = ""
# counter = counter + 1
# print("No data, retry number: ", counter)
if counter > 3:
break
if next_token is job_done:
break
content += str(next_token)
yield next_token, content
except Empty:
continue
global CurrentAgent
CurrentAgent = os.environ["agent_type"]
global ChatbotHistory
ChatbotHistory = []
# timestr = time.strftime("%Y-%m-%d-%H:%M:%S")
# # Running_history = Running_history + [(None, 'Timestamp: '+timestr)]
# # yield Running_history
# WelcomeStr = """
# This is AI Assistant powered by MECH Core Team.
# It is connected remotely with GPT4. The following function is available for you.
# 1. Free Chat with AI assistant
# 2. Search Information and Engineering Data: Vector Database + Internet
# 3. Make specific task with tools:
# - Text to Sound | Sound to Text | Doc summary
# - Code interpret (Beta version)
# - Text to Image (forecast)
# """
# # Running_history = Running_history + [(None, timestr+'\n'+WelcomeStr)]
# ChatbotHistory = ChatbotHistory + [(None, timestr+'\n'+WelcomeStr)]
class CodeBlock:
'''
CodeBlock Class which is able to run in Code Runner
'''
def __init__(self, code):
self.code = code
self.output = ""
self.active_line = None
def refresh(self):
print(f"Active line: {self.active_line}")
print(f"Output: {self.output}")
code_1 = """
for i in range(3):
print("hello world")
"""
code_2 = """
!pip install python-pptx
"""
def Code_Runner(code_raw: str):
# interpreter = CodeInterpreter(language="python", debug_mode=True)
global CurrentAgent
if CurrentAgent == "Zero Short React 2":
code_raw = RemoveIndent(code_raw)
if '!pip' in code_raw or 'pip install' in code_raw:
try:
code_raw=code_raw.replace('!pip', 'pip')
except Exception as e:
print(e)
interpreter = CodeInterpreter(language="shell", debug_mode=True)
else:
interpreter = CodeInterpreter(language="python", debug_mode=True)
# interpreter = CodeInterpreter(language=lang, debug_mode=True)
code_block = CodeBlock(code_raw)
interpreter.active_block = code_block
output = interpreter.run()
print("Real Output: \n", output)
try:
if output.strip() =="" or output == []:
output = "It is Done. No Error Found."
except Exception as e:
print(e)
return output
def RemoveIndent(code_string, indentation_level=4):
lines = code_string.split('\n')
corrected_lines = []
for line in lines:
if line.strip() == "":
continue
line_without_indentation = line[indentation_level:] \
if line.startswith(' ' * indentation_level) else line
corrected_lines.append(line_without_indentation)
corrected_content = '\n'.join(corrected_lines)
return corrected_content
Code_Runner(code_1)
Code_Runner(code_2)
async def TestCodeInterpret(CustomMessage:str):
# create a session
session = CodeInterpreterSession(llm=GPTfake)
session.start()
# generate a response based on user input
response = await session.generate_response(CustomMessage)
# output the response (text + image)
print("AI: ", response.content)
for file in response.files:
file.show_image()
# terminate the session
session.stop()
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
sample = ds[0]["audio"]
global Audio_output
Audio_output = []
def speech_to_text_loc(audio):
device = "cpu"
pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-small",
chunk_length_s=30,
device=device,
)
print("type of audio:", type(audio))
if type(audio) == dict:
text = pipe(audio.copy(), batch_size=2)["text"]
else:
text = pipe(audio, batch_size=2)["text"]
return text
print("voice to text loc: ", speech_to_text_loc(sample))
def text_to_speech_loc(text):
device = "cpu"
pipe = pipeline(
"text-to-speech",
model="microsoft/speecht5_tts",
device=device,
)
output = pipe(text)
speech = output["audio"]
sampling_rate = output["sampling_rate"]
print("Type of speech: ", type(speech))
print("sampling_rate: ", sampling_rate)
timestr = time.strftime("%Y%m%d-%H%M%S")
# sampling_rate = 16000
with open('sample-' + timestr + '.wav', 'wb') as audio:
wavfile.write(audio, sampling_rate, speech)
# audio = sf.write("convert1.wav", speech, samplerate=16000)
print("audio: ", audio)
return audio
def text_to_speech_loc2(Text_input):
global Audio_output
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
inputs = processor(text = Text_input, return_tensors="pt")
# load xvector containing speaker's voice characteristics from a dataset
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
print("Type of speech: ", type(speech))
timestr = time.strftime("%Y%m%d-%H%M%S")
# sampling_rate = 16000
with open('sample-' + timestr + '.wav', 'wb') as audio:
sf.write(audio, speech.numpy(), samplerate=16000)
# audio = sf.write("convert1.wav", speech, samplerate=16000)
print("audio: ", audio)
Audio_output.append(audio.name)
return audio
print("text to speech2: ", text_to_speech_loc2("Good morning."))
class GPTRemote(LLM):
n: int
@property
def _llm_type(self) -> str:
return "custom"
def _call(
self,
prompt: str,
stop: Optional [List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any
) -> str:
print("prompt:", prompt)
output = asyncio.run(start_playwright(prompt))
# output = "test custom llm"
# print(type(output))
if output is None:
output = "No Feedback"
print("-" * 20)
print('Raw: \n', output)
keywords = ['Action:', 'Action Input:', 'Observation:', 'Thought:', 'Final Answer:']
# print("Judge 1: ", 'Action:' in output)
# print("Judge 2: ", 'Action Input:' in output)
# print("Judge 3: ", 'Observation:' in output)
# print("Judge 4: ", 'Thought:' in output)
# print("Judge Final Answer: ",'Final Answer:' in output)
# for item in keywords:
# if item in output:
# output = output.replace(item, '\n'+item)
# if '|' in output:
# output = output.replace('|', '')
# if 'Thought:' not in output:
# output = 'Thought:'+ output
# if 'Action Input:' in output and 'Observation:' in output:
if 'Action:' in output and 'Observation:' in output:
output = output.split('Observation:')[0]
global CurrentAgent
# if Choice == "Structured Zero Short Agent":
if CurrentAgent == 'Structured Zero Short Agent':
try:
# temp = output.split('{')[1].split('}')[0:-2]
if output.strip()[-1] == '}' and 'Action:' in output:
print("valid command")
elif 'Action:' in output:
output = output + '}'
print("corrected command")
pattern = r'\{((?:[^{}]|(?R))*)\}'
temp = regex.search(pattern, output)
rrr = temp.group()
output = output.replace(rrr, '```'+ '\n' + rrr + '\n'+'```')
# print("Found command: ", output)
except Exception as e:
print("model internal error:", e)
print("-" * 20)
print("Treated output: \n", output)
return output
@property
def _identifying_params(self) -> Mapping[str, Any]:
return [("n", self.n)]
def treat_output(text):
keywords = ['Action:', 'Action Input:', 'Observation:', 'Thought:', 'Final Answer:']
for item in keywords:
if item in text:
text.replace(item, '\n'+item)
print("treat output: ", text)
return text
# def _generate(
# self,
# prompts: List[str],
# stop: Optional[List[str]] = None,
# run_manager: Optional[CallbackManagerForLLMRun] = None,
# **kwargs: Any,
# ) -> LLMResult:
# result = LLMResult()
# result.generations = [Generation("test result")]
# return result
# """Run the LLM on the given prompts."""
GPTfake = GPTRemote(n=0)
async def start_playwright(question: str):
start_t = time.time()
pw = await async_playwright().start()
browser = await pw.chromium.launch(headless=True)
end_t = time.time()
print("Init Browser Done:", end_t - start_t)
start_t = end_t
# browser = await pw.webkit.launch(headless=True)
page = await browser.new_page()
# note all methods are async (use the "await" keyword)
await page.goto(os.environ["Endpoint_GPT4"])
# print("Title of Web: ", await page.title())
end_t = time.time()
print("New Page Done:", end_t - start_t)
start_t = end_t
await page.wait_for_timeout(200)
# print("Content of Web: ", await page.content())
# print("Test content: ", await page.locator("//div[@class='css-zt5igj e1nzilvr3']").inner_html())
# print("Test content: ", await page.locator("//div[@class='css-zt5igj e1nzilvr3']").inner_text())
await page.locator("//textarea").fill(question)
await page.wait_for_timeout(200)
# print("Content of Web: ", await page.content())
# await page.locator("//button[@class='css-1wi2cd3 e1d2x3se3']").click()
await page.locator("//textarea").press("Enter")
await page.wait_for_timeout(200)
# print("Content of Web: ", await page.content())
# print("output_text 1", await page.locator("//div[@aria-label='Chat message from assistant']").last.inner_text())
# output_text = await page.locator("//div[@aria-label='Chat message from assistant']").last.inner_text()
# print("output_text 1", output_text)
output_history = "NOTHING"
for i in range(100):
output_text_old = await page.locator("//div[@aria-label='Chat message from assistant']").last.inner_text()
html_content = await page.locator("//div[@aria-label='Chat message from assistant']//div[@class='stMarkdown']").last.inner_html()
markdown_converter = html2text.HTML2Text()
output_text = markdown_converter.handle(html_content)
print("output_text... :")
if output_text == output_history and '▌' not in output_text and output_text != "":
end_t = time.time()
print("Output Done:", end_t - start_t)
return output_text
else:
await page.wait_for_timeout(500)
output_history = output_text
print("-------- Final Answer-----------\n", output_text)
await browser.close()
# import playsound
langchain.debug = True
global memory3
memory3 = ConversationBufferWindowMemory(memory_key="chat_history", input_key="input", output_key='output', return_messages=True)
global memory2
memory2 = ConversationBufferWindowMemory(memory_key="chat_history")
global memory_openai
memory_openai = ConversationBufferWindowMemory(memory_key="memory", return_messages=True)
global last_request
last_request = ""
# Custom document loaders
class MyElmLoader(UnstructuredEmailLoader):
"""Wrapper to fallback to text/plain when default does not work"""
def load(self) -> List[Document]:
"""Wrapper adding fallback for elm without html"""
try:
try:
doc = UnstructuredEmailLoader.load(self)
except ValueError as e:
if 'text/html content not found in email' in str(e):
# Try plain text
self.unstructured_kwargs["content_source"]="text/plain"
doc = UnstructuredEmailLoader.load(self)
else:
raise
except Exception as e:
# Add file_path to exception message
raise type(e)(f"{self.file_path}: {e}") from e
return doc
LOADER_MAPPING = {
".csv": (CSVLoader, {}),
# ".docx": (Docx2txtLoader, {}),
".doc": (UnstructuredWordDocumentLoader, {}),
".docx": (UnstructuredWordDocumentLoader, {}),
".enex": (EverNoteLoader, {}),
".eml": (MyElmLoader, {}),
".epub": (UnstructuredEPubLoader, {}),
".html": (UnstructuredHTMLLoader, {}),
".md": (UnstructuredMarkdownLoader, {}),
".odt": (UnstructuredODTLoader, {}),
".pdf": (PyMuPDFLoader, {}),
".ppt": (UnstructuredPowerPointLoader, {}),
".pptx": (UnstructuredPowerPointLoader, {}),
".txt": (TextLoader, {"encoding": "utf8"}),
".xls": (UnstructuredExcelLoader, {}),
".xlsx": (UnstructuredExcelLoader, {"mode":"elements"}),
# Add more mappings for other file extensions and loaders as needed
}
source_directory = 'Upload Files'
global file_list_loaded
file_list_loaded = []
chunk_size = 500
chunk_overlap = 300
global file_list_by_user
file_list_by_user = []
global Filename_Chatbot
Filename_Chatbot = ""
def load_single_document(file_path: str) -> List[Document]:
ext = "." + file_path.rsplit(".", 1)[-1]
if ext in LOADER_MAPPING:
loader_class, loader_args = LOADER_MAPPING[ext]
loader = loader_class(file_path, **loader_args)
return loader.load()
raise ValueError(f"Unsupported file extension '{ext}'")
def load_documents(source_dir: str, ignored_files: List[str] = []) -> List[Document]:
"""
Loads all documents from the source documents directory, ignoring specified files
"""
all_files = []
for ext in LOADER_MAPPING:
all_files.extend(
glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True)
)
filtered_files = [file_path for file_path in all_files if file_path not in ignored_files]
with Pool(processes=os.cpu_count()) as pool:
results = []
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)):
results.extend(docs)
pbar.update()
return results
def load_documents_2(all_files: List[str] = [], ignored_files: List[str] = []) -> List[Document]:
"""
Loads all documents from the source documents directory, ignoring specified files
"""
# all_files = []
# for ext in LOADER_MAPPING:
# all_files.extend(
# glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True)
# )
filtered_files = [file_path for file_path in all_files if file_path not in ignored_files]
results = []
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
for file in filtered_files:
docs = load_single_document(file)
results.extend(docs)
pbar.update()
return results
def process_documents(ignored_files: List[str] = []) -> List[Document]:
"""
Load documents and split in chunks
"""
print(f"Loading documents from {source_directory}")
documents = load_documents(source_directory, ignored_files)
if not documents:
print("No new documents to load")
exit(0)
print(f"Loaded {len(documents)} new documents from {source_directory}")
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
text_splitter = TokenTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
texts = text_splitter.split_documents(documents)
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)")
return texts
def process_documents_2(ignored_files: List[str] = []) -> List[Document]:
"""
Load documents and split in chunks
"""
global file_list_loaded
print(f"Loading documents from {source_directory}")
print("File Path to start processing:", file_list_loaded)
documents = load_documents_2(file_list_loaded, ignored_files)
if not documents:
print("No new documents to load")
exit(0)
print(f"Loaded {len(documents)} new documents from {source_directory}")
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
text_splitter = TokenTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
texts = text_splitter.split_documents(documents)
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)")
return texts
def process_documents_3(ignored_files: List[str] = []) -> List[Document]:
"""
Load documents and split in chunks
"""
global file_list_loaded
print(f"Loading documents from {source_directory}")
print("File Path to start processing:", file_list_loaded)
documents = load_documents_2(file_list_loaded, ignored_files)
if not documents:
print("No new documents to load")
exit(0)
print(f"Loaded {len(documents)} new documents from {source_directory}")
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=8000, chunk_overlap=1000)
text_splitter = TokenTextSplitter(chunk_size=4000, chunk_overlap=500)
texts = text_splitter.split_documents(documents)
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)")
return texts
def UpdateDb():
global vectordb_p
global index_name
# pinecone.Index(index_name).delete(delete_all=True, namespace='')
# collection = vectordb_p.get()
# split_docs = process_documents([metadata['source'] for metadata in collection['metadatas']])
# split_docs = process_documents()
split_docs = process_documents_2()
tt = len(split_docs)
print(split_docs[tt-1])
print(f"Creating embeddings. May take some minutes...")
vectordb_p = Pinecone.from_documents(split_docs, embeddings, index_name = index_name)
print("Pinecone Updated Done")
print(index.describe_index_stats())
ListAgentWithRemoteGPT = ['Zero Short React 2','Zero Short Agent 2',
'OpenAI Multi 2', 'Conversation Agent',
'Code Interpreter', 'Structured Zero Short Agent']
def SummarizeDoc():
global vectordb_p
global Choice
global CurrentAgent
# pinecone.Index(index_name).delete(delete_all=True, namespace='')
# collection = vectordb_p.get()
# split_docs = process_documents([metadata['source'] for metadata in collection['metadatas']])
# split_docs = process_documents()
split_docs = process_documents_3()
tt = len(split_docs)
print(split_docs[tt-1])
sum_text=""
try:
if CurrentAgent in ListAgentWithRemoteGPT:
sum_chain = load_summarize_chain(GPTfake, chain_type='refine', verbose=True)
else:
sum_chain = load_summarize_chain(llm, chain_type='refine', verbose=True)
sum_text = sum_chain.run(split_docs)
return sum_text
except Exception as e:
print("SummarizeDoc error:", e)
# sum_text = "test sum"
class DB_Search(BaseTool):
name = "Vector_Database_Search"
description = "This is the internal vector database to search information firstly. If information is found, it is trustful."
def _run(self, query: str) -> str:
response, source = QAQuery_p(query)
# response = "test db_search feedback"
return response
def _arun(self, query: str):
raise NotImplementedError("N/A")
class DB_Search2(BaseTool):
name = "Vector Database Search"
description = "This is the internal vector database to search information firstly (i.e. engineering data, acronym.)"
def _run(self, query: str) -> str:
response, source = QAQuery_p(query)
# response = "test db_search feedback"
return response
def _arun(self, query: str):
raise NotImplementedError("N/A")
def Text2Sound(text):
speech_config = speechsdk.SpeechConfig(subscription=os.environ['SPEECH_KEY'], region=os.environ['SPEECH_REGION'])
audio_config = speechsdk.audio.AudioOutputConfig(use_default_speaker=True)
speech_config.speech_synthesis_voice_name='en-US-JennyNeural'
# speech_synthesizer = ""
speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config, audio_config=audio_config)
speech_synthesis_result = speech_synthesizer.speak_text_async(text).get()
# if speech_synthesis_result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted:
# print("Speech synthesized for text [{}]".format(text))
# elif speech_synthesis_result.reason == speechsdk.ResultReason.Canceled:
# cancellation_details = speech_synthesis_result.cancellation_details
# print("Speech synthesis canceled: {}".format(cancellation_details.reason))
# if cancellation_details.reason == speechsdk.CancellationReason.Error:
# if cancellation_details.error_details:
# print("Error details: {}".format(cancellation_details.error_details))
# print("Did you set the speech resource key and region values?")
print("test")
return speech_synthesis_result
pass
def get_azure_access_token():
azure_key = os.environ.get("SPEECH_KEY")
try:
response = requests.post(
"https://eastus.api.cognitive.microsoft.com/sts/v1.0/issuetoken",
headers={
"Ocp-Apim-Subscription-Key": azure_key
}
)
response.raise_for_status()
except requests.exceptions.RequestException as e:
print(f"Error: {e}")
return None
# print (response.text)
return response.text
def text_to_speech_2(text):
global Audio_output
access_token = get_azure_access_token()
voice_name='en-US-AriaNeural'
if not access_token:
return None
try:
response = requests.post(
"https://eastus.tts.speech.microsoft.com/cognitiveservices/v1",
headers={
"Authorization": f"Bearer {access_token}",
"Content-Type": "application/ssml+xml",
"X-MICROSOFT-OutputFormat": "riff-24khz-16bit-mono-pcm",
"User-Agent": "TextToSpeechApp",
},
data=f"""
<speak version='1.0' xml:lang='en-US'>
<voice name='{voice_name}'>
{text}
</voice>
</speak>
""",
)
response.raise_for_status()
timestr = time.strftime("%Y%m%d-%H%M%S")
with open('sample-' + timestr + '.wav', 'wb') as audio:
audio.write(response.content)
print ("File Name ", audio.name)
# print (audio)
Audio_output.append(audio.name)
# return audio.name
return audio
except requests.exceptions.RequestException as e:
print(f"Error: {e}")
return None
def speech_to_text(Filename_Audio_input_single):
print("Start speech to text ....")
access_token = get_azure_access_token()
if not access_token:
return None
try:
endpoint = f"https://eastus.stt.speech.microsoft.com/speech/recognition/conversation/cognitiveservices/v1?language=en-US"
headers={
"Authorization": f"Bearer {access_token}",
"Content-Type": "audio/wav",}
response = requests.post(endpoint, headers=headers, data=open(Filename_Audio_input_single, "rb"))
print("Speech to Text Raw: ", response.text)
text_from_audio = response.text.split('DisplayText":"')[1].split('"}')[0]
# text_from_audio = response.text('DisplayText')
print("Speech to Text: ", text_from_audio)
return text_from_audio
except requests.exceptions.RequestException as e:
print(f"Error speech_to_text: {e}")
return None
Text2Sound_tool = Tool(
name = "Text_To_Sound_REST_API",
# func = Text2Sound,
func = text_to_speech_2,
description = "Useful when you need to convert text into sound file."
)
Text2Sound_tool2 = Tool(
name = "Text To Sound REST API",
# func = Text2Sound,
func = text_to_speech_2,
description = "Useful when you need to convert text into sound file."
)
Text2Sound_tool_loc = Tool(
name = "Text To Sound API 2",
# func = Text2Sound,
func = text_to_speech_loc2,
description = "Useful when you need to convert text into sound file."
)
Wikipedia = WikipediaAPIWrapper()
Netsearch = DuckDuckGoSearchRun()
Python_REPL = PythonREPL()
wikipedia_tool = Tool(
name = "Wikipedia_Search",
func = Wikipedia.run,
description = "Useful to search a topic, country or person when there is no availble information in vector database"
)
duckduckgo_tool = Tool(
name = "Duckduckgo_Internet_Search",
func = Netsearch.run,
description = "Useful to search information in internet when it is not available in other tools"
)
python_tool = Tool(
name = "Python_REPL",
func = Python_REPL.run,
description = "Useful when you need python script to answer questions. You should input python code."
)
wikipedia_tool2 = Tool(
name = "Wikipedia Search",
func = Wikipedia.run,
description = "Useful to search a topic, country or person when there is no availble information in vector database"
)
duckduckgo_tool2 = Tool(
name = "Duckduckgo Internet Search",
func = Netsearch.run,
description = "Useful to search in internet for real-time information and additional information which is not available in other tools"
)
python_tool2 = Tool(
name = "Python REPL",
func = Python_REPL.run,
description = "Useful when you need python script to answer questions. You should input python code."
)
python_tool3 = Tool(
name = "Code Runner",
func = Code_Runner,
description = """Code Interpreter which is able to run code block in local machine.\n It is capable to treat **any** task by running the code and output the result. (i.e. analyzer data, modify/creat documents, draw diagram/flowchart ...)\n You should input detail code with right indentation."""
)
# tools = [DB_Search(), wikipedia_tool, duckduckgo_tool, python_tool]
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_KEY"] = os.environ["OPENAI_API_KEY"]
os.environ["OPENAI_API_BASE"] = os.environ["OPENAI_API_BASE"]
os.environ["OPENAI_API_VERSION"] = os.environ["OPENAI_API_VERSION"]
# os.environ["OPENAI_API_VERSION"] = "2023-05-15"
username = os.environ["username1"]
password = os.environ["password"]
SysLock = os.environ["SysLock"] # 0=unlock 1=lock
# deployment_name="Chattester"
chat = AzureChatOpenAI(
deployment_name=os.environ["deployment_name"],
temperature=0,
)
llm = chat
# llm = GPTfake
llm_math = LLMMathChain.from_llm(llm)
llm_math_2 = LLMMathChain.from_llm(GPTfake)
math_tool = Tool(
name ='Calculator',
func = llm_math.run,
description ='Useful for when you need to answer questions about math.'
)
math_tool_2 = Tool(
name ='Calculator',
func = llm_math_2.run,
description ='Useful for when you need to answer questions about math.'
)
# openai
tools = [DB_Search(), duckduckgo_tool, python_tool, math_tool, Text2Sound_tool]
tools2 = [DB_Search2(), duckduckgo_tool2, wikipedia_tool2, python_tool2, math_tool, Text2Sound_tool2]
tools_remote = [DB_Search2(), duckduckgo_tool2, wikipedia_tool2, python_tool3, math_tool_2, Text2Sound_tool_loc]
# tools = load_tools(["Vector Database Search","Wikipedia Search","Python REPL","llm-math"], llm=llm)
# Openai embedding
embeddings_openai = OpenAIEmbeddings(deployment="model_embedding", chunk_size=15)
# huggingface embedding model
embed_model_id = 'sentence-transformers/all-MiniLM-L6-v2'
# device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
device = 'cpu'
embeddings_miniLM = HuggingFaceEmbeddings(
model_name=embed_model_id,
model_kwargs={'device': device},
)
# embeddings = embeddings_openai
embeddings = embeddings_miniLM
# embeddings = OpenAIEmbeddings(deployment="model_embedding_2", chunk_size=15)
pinecone.init(
api_key = os.environ["pinecone_api_key"],
# environment='asia-southeast1-gcp-free',
environment='us-west4-gcp-free',
# openapi_config=openapi_config
)
# index_name = 'stla-baby'
global index_name
index_name = 'stla-back'
index = pinecone.Index(index_name)
# index.delete(delete_all=True, namespace='')
print(pinecone.whoami())
print(index.describe_index_stats())
"""
Answer the following questions as best you can with details.
You can always use tools to convert text to sound.
You must always check internal vector database first and try to answer the question based on the information in internal vector database only.
Only when there is no information available from vector database, you can search information by using other tools.
You have access to the following tools:
Vector Database Search: This is the internal database to search information firstly. If information is found, it is trustful.
Duckduckgo Internet Search: Useful to search information in internet when it is not available in other tools.
Wikipedia Search: Useful to search a topic, country or person when there is no availble information in vector database
Python REPL: Useful when you need python to answer questions. You should input python code.
Calculator: Useful for when you need to answer questions about math.
Text To Sound: Useful when you need to convert text into sound file."""
PREFIX = """Answer the following questions as best you can with detail information and explanation.
You can always use tools to convert text to sound.
You must always check vector database first and try to answer the question based on the information in vector database only.
Only when there is no information available from vector database, you can search information by using other tools.
When the final answer has output files, you must output the **name** of the file.
You have access to the following tools:"""
PREFIX_2 = """You are a helpful AI assistant. You are capable to handle **any** task. Your mission is to answer the following request as best as you can with detail information and explanation. When you need information, you must always check vector database first and try to answer the question based on the information found in vector database only. Only when there is no information available from vector database, you can search information by using other tools. When the final answer has output files, you must output the **name** of the file.\n
---\n You have access to the following tools:\n"""
PREFIX_3 ="""
You are a helpful AI assistant. Your mission is to answer the following user request as best as you can with detail information and explanation.
If you are not clear about the request, you can ask user for more details and the confirmation. You can provide additional suggestion to user on the request and ask confirmation from user.
When you are clear about the request, you can start to answer the request by **writing a plan** firstly. In general, try to **make plans** with as few steps as possible.
When you need information, you can use tools as below and merge all gathered information from different tools.
When you need to use "Code Runner" for code running, **Always recap the plan between each code block** (you have extreme short-term memory loss, so you need to recap the plan between each message block to retain it).
When you send a message containing code to "Code Runner", it will be executed **on the user's machine**. The user has given you **full and complete permission** to execute any code necessary to complete the task. You have full access to control their computer to help them. Code entered into "Code Runner" will be executed **in the users local environment**.
If you want to send data between programming languages, save the data to a txt or json. You should finish each step and output the result with the text content.
You can access the internet. Run **any code** to achieve the goal, and if at first you don't succeed, try again and again.
You can install new packages with pip. Try to install all necessary packages in one command at the beginning.
When a user refers to a filename, they're likely referring to an existing file in the directory you're currently in ("Code Runner" executes on the user's machine).
When a user refers to a uploaded file, they're likely referring to an existing file in {file_list_by_user}
In general, choose packages that have the most universal chance to be already installed and to work across multiple applications. Packages like ffmpeg and pandoc that are well-supported and powerful.
Write messages to the user in Markdown. When the final answer has output files, you must output the **name** of the file.
You are capable of **any** task.
---\n You have access to the following tools:\n
"""
FORMAT_INSTRUCTIONS = """Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [Vector Database Search, Duckduckgo Internet Search, Python REPL, Calculator]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question"""
FORMAT_INSTRUCTIONS_2 = """Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [Vector Database Search, Duckduckgo Internet Search, Python REPL, Calculator]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question"""
'''
When you don't have enough information, you can use tools and you must define **Action** and **Action Input** after **Thought**.
'''
FORMAT_INSTRUCTIONS_3 = """
When you don't have enough information, you can use tools and you must use the following format to define **Thought**, **Action** and **Action Input**:\n\
'''
"Thought": you should always think about what to do.\n "Action": the action to take, should be one of [{tool_names}].\n "Action Input": the input to the action.\n "Observation": the result of the action.\n
'''If **Thought**, **Action**, **Action Input** is missing in the response of using tools, you must re-write the response.\n
---\n When you are able to provide final answer, you must use the following format to define **Final Answer** after **Thought**:\n\
'''
"Thought": I now know the final answer.\n "Final Answer": the final answer to the original input question.\n
'''\n If **Thought**, **Final Answer** is missing in the response of final answer, you must re-write the response.\n\
---\nExample of using tools:\n\
```\n Question: what is architecture?\n---\n Thought: I need to check the definition of architecture in Vector Database.\n Action: Vector Database Search\n Action Input: architecture\n
```\n
Example of final answer:\n\
```\n Question: Good morning\n---\n Thought: I need to make a greeting to user.\n Final Answer: Hello, how can I do for you ?\n
```\n
"""
FORMAT_INSTRUCTIONS_STRUC = """
When it is necessary to use tools and you must use the following format to output "Thought", "Action" (json blob):\n
'''
Thought: you should always think about what to do and consider previous and subsequent steps
Action:
```
$JSON_BLOB
```
Observation: the result of the action.
'''
$JSON_BLOB with the value of the following 2 keys:
"action": **Valid value** must be one of [{tool_names}]
"action_input": The input for the action
If **Thought**, **Action** is missing in the response of using tools, you must re-write the response.
---\n When you are able to provide final answer, you must use the following format to output "Thought", "Action" (json blob):\n
'''
Thought: I know what to respond
Action:
```
$JSON_BLOB
```
$JSON_BLOB with value of the following 2 keys:
"action": "Final Answer"
"action_input": Final response to human
'''
If **Thought**, **Action** is missing in the response of using tools, you must re-write the response.
"""
SUFFIX = """
Begin!
Request: {input}
Thought: {agent_scratchpad}"""
SUFFIX2 = """Begin!\n\
{chat_history}\n\
---\n\
Question: {input}\n\
---\n\
Thought: {agent_scratchpad}\n\
"""
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=PREFIX,
suffix=SUFFIX,
# suffix=SUFFIX2,
format_instructions=FORMAT_INSTRUCTIONS,
input_variables=["input", "agent_scratchpad"]
# input_variables=["input", "chat_history", "agent_scratchpad"]
)
prompthead_openai_1 = \
"""
You are a helpful AI assistant. Your mission is to answer the following request as best as you can with detail information and explanation.
You must always check vector database first and try to answer the request based on the information in vector database only.
Only when there is no information available from vector database, you can search information by using other tools.
"""
prompthead_openai_OR = \
"""
You are a helpful AI assistant.
"""
prompthead_openai = \
"""
You are a helpful AI assistant to answer the following questions as best as you can with detail information.
You must always search information in vector database first and answer the question based on the information in vector database only.
Only when there is no information available from vector database, you can search information by using other method.
"""
prompt_openai = OpenAIMultiFunctionsAgent.create_prompt(
system_message = SystemMessage(
content = prompthead_openai),
# extra_prompt_messages = [MessagesPlaceholder(variable_name="memory")],
)
input_variables=["input", "chat_history", "agent_scratchpad"]
input_variables_2=["input", "chat_history", "agent_scratchpad", "file_list_by_user"]
agent_ZEROSHOT_REACT = initialize_agent(tools2, llm,
# agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose = True,
handle_parsing_errors = True,
max_iterations = int(os.environ["max_iterations"]),
early_stopping_method="generate",
agent_kwargs={
'prefix': PREFIX,
'format_instructions': FORMAT_INSTRUCTIONS,
'suffix': SUFFIX,
# 'input_variables': input_variables,
},
# input_variables = input_variables,
# agent_kwargs={
# 'prompt': prompt,
# }
)
agent_ZEROSHOT_REACT_2 = initialize_agent(tools_remote, GPTfake,
# agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose = True,
handle_parsing_errors = True,
max_iterations = int(os.environ["max_iterations"]),
early_stopping_method="generate",
memory = memory2,
agent_kwargs={
'prefix': PREFIX_2,
'format_instructions': FORMAT_INSTRUCTIONS_3,
'suffix': SUFFIX2,
'input_variables': input_variables,
},
# input_variables = input_variables,
# agent_kwargs={
# 'prompt': prompt,
# }
)
agent_STRUCTURED_ZEROSHOT_REACT = initialize_agent(tools_remote, GPTfake,
# agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION,
verbose = True,
handle_parsing_errors = True,
max_iterations = int(os.environ["max_iterations"]),
early_stopping_method="generate",
memory = memory3,
agent_kwargs={
'prefix': PREFIX_3,
'format_instructions': FORMAT_INSTRUCTIONS_STRUC,
# 'suffix': SUFFIX2,
"memory_prompts": [MessagesPlaceholder(variable_name="chat_history")],
'input_variables': input_variables_2,
},
# input_variables = input_variables,
# agent_kwargs={
# 'prompt': prompt,
# }
)
agent_CODE_INTERPRETER = initialize_agent(tools_remote, GPTfake,
# agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose = True,
handle_parsing_errors = True,
max_iterations = int(os.environ["max_iterations"]),
early_stopping_method="generate",
memory = memory2,
agent_kwargs={
'prefix': PREFIX_2,
'format_instructions': FORMAT_INSTRUCTIONS_3,
'suffix': SUFFIX2,
'input_variables': input_variables,
},
# input_variables = input_variables,
# agent_kwargs={
# 'prompt': prompt,
# }
)
agent_CONVERSATION = initialize_agent(tools_remote, GPTfake,
# agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
agent=AgentType.CONVERSATIONAL_REACT_DESCRIPTION,
verbose = True,
handle_parsing_errors = True,
max_iterations = int(os.environ["max_iterations"]),
early_stopping_method="generate",
memory = memory2,
# agent_kwargs={
# 'prefix': PREFIX_2,
# 'format_instructions': FORMAT_INSTRUCTIONS_3,
# 'suffix': SUFFIX2,
# 'input_variables': input_variables,
# },
# input_variables = input_variables,
# agent_kwargs={
# 'prompt': prompt,
# }
)
llm_chain = LLMChain(llm=llm, prompt=prompt)
llm_chain_2 = LLMChain(llm=GPTfake, prompt=prompt)
# print("Test LLM Chain", llm_chain_2({'agent_scratchpad':"", 'input':"what is PDP?"}))
# llm_chain_openai = LLMChain(llm=llm, prompt=prompt_openai, verbose=True)
agent_core = ZeroShotAgent(llm_chain=llm_chain, tools=tools2, verbose=True)
agent_core_2 = ZeroShotAgent(llm_chain=llm_chain_2, tools=tools2, verbose=True)
agent_core_openai = OpenAIMultiFunctionsAgent(llm=llm, tools=tools, prompt=prompt_openai, verbose=True)
# agent_core_openai_2 = OpenAIMultiFunctionsAgent(llm=GPTfake, tools=tools, prompt=prompt_openai, verbose=True)
agent_ZEROSHOT_AGENT = AgentExecutor.from_agent_and_tools(
agent=agent_core,
tools=tools2,
verbose=True,
# memory=memory,
handle_parsing_errors = True,
max_iterations = int(os.environ["max_iterations"]),
early_stopping_method="generate",
)
agent_ZEROSHOT_AGENT_2 = AgentExecutor.from_agent_and_tools(
agent=agent_core_2,
tools=tools_remote,
verbose=True,
# memory=memory,
handle_parsing_errors = True,
max_iterations = int(os.environ["max_iterations"]),
early_stopping_method="generate",
)
agent_OPENAI_MULTI = AgentExecutor.from_agent_and_tools(
agent=agent_core_openai,
tools=tools,
verbose=True,
# memory=memory_openai,
handle_parsing_errors = True,
max_iterations = int(os.environ["max_iterations"]),
early_stopping_method="generate",
)
# agent_OPENAI_MULTI_2 = AgentExecutor.from_agent_and_tools(
# agent=agent_core_openai_2,
# tools=tools,
# verbose=True,
# # memory=memory_openai,
# handle_parsing_errors = True,
# max_iterations = int(os.environ["max_iterations"]),
# early_stopping_method="generate",
# )
# agent.max_execution_time = int(os.getenv("max_iterations"))
# agent.handle_parsing_errors = True
# agent.early_stopping_method = "generate"
def SetAgent(Choice):
global agent
global CurrentAgent
if Choice =='Zero Short Agent':
agent = agent_ZEROSHOT_AGENT
print("Set to:", Choice)
elif Choice =='Zero Short React':
agent = agent_ZEROSHOT_REACT
print("Set to:", Choice)
elif Choice =='OpenAI Multi':
agent = agent_OPENAI_MULTI
print("Set to:", Choice)
elif Choice =='Zero Short React 2':
agent = agent_ZEROSHOT_REACT_2
print("Set to:", Choice)
elif Choice =='Zero Short Agent 2':
agent = agent_ZEROSHOT_AGENT_2
print("Set to:", Choice)
elif Choice == "None":
agent = None
print("Set to:", Choice)
elif Choice =='Conversation Agent':
agent = agent_CONVERSATION
print("Set to:", Choice)
elif Choice =='Code Interpreter':
agent = agent_CODE_INTERPRETER
print("Set to:", Choice)
elif Choice =='Structured Zero Short Agent':
agent = agent_STRUCTURED_ZEROSHOT_REACT
print("Set to:", Choice)
CurrentAgent = Choice
return CurrentAgent
global agent
Choice = os.environ["agent_type"]
SetAgent(Choice)
# agent = agent_ZEROSHOT_AGENT
# print(agent.agent.llm_chain.prompt.template)
# print(agent.agent.llm_chain.prompt)
global vectordb
# vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
global vectordb_p
vectordb_p = Pinecone.from_existing_index(index_name, embeddings)
# loader = DirectoryLoader('./documents', glob='**/*.txt')
# documents = loader.load()
# text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
# split_docs = text_splitter.split_documents(documents)
# print(split_docs)
# vectordb = Chroma.from_documents(split_docs, embeddings, persist_directory='db')
# question = "what is LCDV ?"
# rr = vectordb.similarity_search(query=question, k=4)
# vectordb.similarity_search(question)
# print(type(rr))
# print(rr)
def chathmi(message, history1):
# response = "I don't know"
# print(message)
response, source = QAQuery_p(message)
time.sleep(0.3)
print(history1)
yield response
# yield history
def chathmi2(message, history):
global Audio_output
try:
output = agent.run(message)
time.sleep(0.3)
response = output
yield response
print ("response of chatbot:", response)
print ("\n")
# real_content = response[-1:]
# print("real_content", real_content)
try:
temp = response.split("(sandbox:/")[1] # (sandbox:/sample-20230805-0807.wav)
file_name = temp.split(")")[0]
print("file_name:", file_name)
dis_audio = []
dis_audio.append(file_name)
# yield dis_audio
yield dis_audio
except:
pass
if len(Audio_output) > 0:
# time.sleep(0.5)
# yield Audio_output
Audio_output = []
print("History: ", history)
print("-" * 20)
print("-" * 20)
except Exception as e:
print("error:", e)
# yield history
# chatbot = gr.Chatbot().style(color_map =("blue", "pink"))
# chatbot = gr.Chatbot(color_map =("blue", "pink"))
def func_upload_file(files, chat_history2):
global file_list_loaded
file_list_loaded = []
print(files)
for unit in files:
file_list_loaded.append(unit.name)
# file_list_loaded = files
print(file_list_loaded)
# print(chat_history)
# test_msg = ["Request Upload File into DB", "Operation Ongoing...."]
# chat_history.append(test_msg)
for file in files:
chat_history2 = chat_history2 + [((file.name,), None)]
yield chat_history2
if os.environ["SYS_Upload_Enable"] == "1":
UpdateDb()
test_msg = ["Request Upload File into DB", "Operation Finished"]
chat_history2.append(test_msg)
yield chat_history2
def Summary_upload_file(files, chat_history2):
global file_list_loaded
file_list_loaded = []
for unit in files:
file_list_loaded.append(unit.name)
# file_list_loaded = files
print(file_list_loaded)
# print(chat_history)
# test_msg = ["Request Upload File into DB", "Operation Ongoing...."]
# chat_history.append(test_msg)
for file in files:
chat_history2 = chat_history2 + [((file.name,), None)]
yield chat_history2
if os.environ["SYS_Upload_Enable"] == "1":
sumtext = SummarizeDoc()
test_msg = [None, sumtext]
chat_history2.append(test_msg)
yield chat_history2
def User_Upload_file(files, chat_history2):
global file_list_by_user
file_list_by_user = []
for unit in files:
file_list_by_user.append(unit.name)
# file_list_loaded = files
print(file_list_by_user)
# print(chat_history)
# test_msg = ["Request Upload File into DB", "Operation Ongoing...."]
chat_history2 = chat_history2 + [("Updated Files:\n", None)]
yield chat_history2
# chat_history.append(test_msg)
for file in files:
chat_history2 = chat_history2 + [((file.name,), None)]
yield chat_history2
class Logger:
def __init__(self, filename):
self.terminal = sys.stdout
self.log = open(filename, "w")
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
self.terminal.flush()
self.log.flush()
def isatty(self):
return False
sys.stdout = Logger("output.log")
def read_logs():
sys.stdout.flush()
with open("output.log", "r") as f:
return f.read()
global record
record = []
def LinkElement(chatbot_history):
'''
Link chatbot display output with other UI
'''
global record
if record != chatbot_history:
last_response = chatbot_history[-1:][1]
print("last response:", last_response)
record = chatbot_history
print(chatbot_history)
# print("link element test")
else:
print("From linkelement: ", chatbot_history)
pass
def chathmi3(message, history2):
global last_request
global Filename_Chatbot
global agent
# global ChatbotHistory
print("Input Message:", message)
last_request = message
history2 = history2 + [(message, None)]
yield ["", history2]
try:
if agent is not None:
# response = agent.run(message)
temp = agent({'file_list_by_user':file_list_by_user, 'input': message})
response = temp['output']
elif agent is None:
response = asyncio.run(start_playwright(message))
time.sleep(0.1)
history2 = history2 + [(None, response)]
yield ["", history2]
print ("response of chatbot:", response)
# real_content = response[-1:]
# print("real_content", real_content)
try:
# temp = response.split("(sandbox:/")[1] # (sandbox:/sample-20230805-0807.wav)
file_names = CheckFileinResp(response)
print("file_name:", file_names)
if file_names != []:
for file_name in file_names:
if file_name != "":
history2 = history2 + [(None, (file_name, file_name))]
Filename_Chatbot = file_name
yield ["", history2]
else:
print("No File Found in Response")
except Exception as e:
print("No need to add file in chatbot:", e)
except Exception as e:
print("chathmi3 error:", e)
# history = history + [(message, None)]
print("History2 in chathmi3: ", history2)
print("-" * 20)
print("-" * 20)
def CheckFileinResp(response):
Filelist = []
try:
pattern = r'sample-(?:\d{8})-(?:\d{6})\.wav'
result = re.findall(pattern, response)
print("wav file in response:", result)
for item in result:
Filelist.append(item)
except Exception as e:
print("No wav found:", e)
try:
pattern = r"(?i)'?([\w./]*\w+\.(?:pptx|docx|doc|xlsx|txt|png|jpg))'?"
result = re.findall(pattern, response)
# print("Other file in response:", result)
for item in result:
if '/' in item:
item = item.split('/')[-1]
Filelist.append(item)
print("Other file in response:", item)
except Exception as e:
print("No other file found:", e)
try:
listWord = ['(https://example.com/', '(sandbox:/']
for item in listWord:
if item in response:
file = response.split(item)[-1].split(")")[0]
print("File found:", file)
Filelist.append(file)
else:
continue
# return "N/A"
except Exception as e:
# return "N/A"
print("no file with", listWord)
return Filelist
def chathmi4(message, history2):
global last_request
global Filename_Chatbot
global agent
# global ChatbotHistory
print("Input Message:", message)
last_request = message
history2 = history2 + [(message, None)]
yield ["", history2, gr.update(visible = False), gr.update(visible = True)]
# yield ["", history2, "SUBMIT", "STOP"]
try:
if agent is not None:
# response = agent.run(message)
temp = agent({'file_list_by_user':file_list_by_user, 'input': message})
response = temp['output']
# print("chathmi4 response:", response)
# test callback
# temp = []
# for next_token, content in stream(message):
# temp = temp + content
# history_int = history2 + [(None, temp)]
# yield(None, history_int, None, None)
elif agent is None:
response = asyncio.run(start_playwright(message))
time.sleep(0.1)
history2 = history2 + [(None, response)]
yield ["", history2, gr.update(visible = True), gr.update(visible = False)]
# yield ["", history2, None, None]
print ("response of chatbot:", response)
# real_content = response[-1:]
# print("real_content", real_content)
# try:
# # temp = response.split("(sandbox:/")[1] # (sandbox:/sample-20230805-0807.wav)
# file_name = CheckFileinResp(response)
# print("file_name:", file_name)
# if file_name != "N/A":
# history2 = history2 + [(None, (file_name,))]
# Filename_Chatbot = file_name
# yield ["", history2, "SUBMIT", "STOP"]
# except Exception as e:
# print("No need to add file in chatbot:", e)
try:
# temp = response.split("(sandbox:/")[1] # (sandbox:/sample-20230805-0807.wav)
file_names = CheckFileinResp(response)
print("file_name:", file_names)
if file_names != []:
for file_name in file_names:
if file_name != "":
history2 = history2 + [(None, (file_name, file_name))]
Filename_Chatbot = file_name
yield ["", history2, "SUBMIT", "STOP"]
else:
print("No File Found in Response")
except Exception as e:
print("No need to add file in chatbot:", e)
except Exception as e:
print("chathmi4 error:", e)
# history = history + [(message, None)]
print("History2: ", history2)
print("-" * 20)
print("-" * 20)
def chathmi5(message, history2):
global last_request
global Filename_Chatbot
global agent
# global ChatbotHistory
print("Input Message:", message)
last_request = message
history2 = history2 + [(message, None)]
yield ["", history2, gr.update(visible = False), gr.update(visible = True)]
# yield ["", history2, "SUBMIT", "STOP"]
try:
if agent is not None:
# response = agent.run(message)
# test callback
temp = ""
for next_token, content in stream(message):
temp = temp + content
response = temp
history_int = history2 + [(None, temp)]
history2 = history_int
yield(None, history_int, None, None)
elif agent is None:
response = asyncio.run(start_playwright(message))
history2 = history2 + [(None, response)]
time.sleep(0.1)
yield ["", history2, gr.update(visible = True), gr.update(visible = False)]
# yield ["", history2, None, None]
print ("response of chatbot:", response)
# real_content = response[-1:]
# print("real_content", real_content)
# try:
# # temp = response.split("(sandbox:/")[1] # (sandbox:/sample-20230805-0807.wav)
# file_name = CheckFileinResp(response)
# print("file_name:", file_name)
# if file_name != "N/A":
# history2 = history2 + [(None, (file_name,))]
# Filename_Chatbot = file_name
# yield ["", history2, "SUBMIT", "STOP"]
# except Exception as e:
# print("No need to add file in chatbot:", e)
try:
# temp = response.split("(sandbox:/")[1] # (sandbox:/sample-20230805-0807.wav)
file_names = CheckFileinResp(response)
print("file_name:", file_names)
if file_names != []:
for file_name in file_names:
if file_name != "":
history2 = history2 + [(None, (file_name, file_name))]
Filename_Chatbot = file_name
yield ["", history2, "SUBMIT", "STOP"]
else:
print("No File Found in Response")
except Exception as e:
print("No need to add file in chatbot:", e)
except Exception as e:
print("chathmi4 error:", e)
# history = history + [(message, None)]
print("History2: ", history2)
print("-" * 20)
print("-" * 20)
def chatremote(message, history2):
global last_request
global Filename_Chatbot
print("Input Message:", message)
last_request = message
history2 = history2 + [(message, None)]
yield ["", history2, gr.update(visible = False), gr.update(visible = True)]
# yield ["", history2, "SUBMIT", "STOP"]
try:
# response = agent.run(message)
response = asyncio.run(start_playwright(message))
time.sleep(0.1)
history2 = history2 + [(None, response)]
yield ["", history2, gr.update(visible = True), gr.update(visible = False)]
# yield ["", history2, None, None]
print ("response of chatbot remote:", response)
# real_content = response[-1:]
# print("real_content", real_content)
try:
temp = response.split("(sandbox:/")[1] # (sandbox:/sample-20230805-0807.wav)
file_name = temp.split(")")[0]
print("file_name:", file_name)
history2 = history2 + [(None, (file_name,))]
Filename_Chatbot = file_name
yield ["", history2, "SUBMIT", "STOP"]
except:
print("No need to add file in chatbot")
except Exception as e:
print("chathmi remote error:", e)
# history = history + [(message, None)]
print("History2: ", history2)
print("-" * 20)
print("-" * 20)
def fake(message, history4):
pass
def clearall():
global memory2
global memory3
global ChatbotHistory
ChatbotHistory = []
try:
memory2.clear()
memory3.clear()
except Exception as e:
print("memory error:", e)
# memory_openai.clear()
global Filename_Chatbot
Filename_Chatbot = []
# file_path = "output.log"
# if os.path.isfile(file_path):
# os.remove(file_path)
# with open(file_path, "w") as file:
# print(f"File '{file_path}' has been created.")
return [[], gr.update(visible=True), gr.update(visible=False), []]
def retry(history3):
global last_request
global Filename_Chatbot
print("last_request", last_request)
message = last_request
history3 = history3 + [(message, None)]
yield history3
try:
if agent is not None:
response = agent.run(message)
elif agent is None:
response = asyncio.run(start_playwright(message))
time.sleep(0.1)
history3 = history3 + [(None, response)]
print ("response of chatbot:", response)
yield history3
# real_content = response[-1:]
# print("real_content", real_content)
try:
# temp = response.split("(sandbox:/")[1] # (sandbox:/sample-20230805-0807.wav)
# file_name = temp.split(")")[0]
# print("file_name:", file_name)
# history3 = history3 + [(None, (file_name,))]
# yield history3
file_names = CheckFileinResp(response)
print("file_name:", file_names)
if file_names != []:
for file_name in file_names:
if file_name != "":
history2 = history2 + [(None, (file_name, file_name))]
Filename_Chatbot = file_name
yield history3
else:
print("No File Found in Response")
except:
print("No need to add file in chatbot")
except Exception as e:
print("Retry error:", e)
# yield chathmi3(last_request, chatbot_history)
def display_input(message, history2):
global last_request
print("Input Message:", message)
last_request = message
history2 = history2 + [(message, None)]
return history2
def Inference_Agent(history_inf):
global last_request
message = last_request
try:
response = agent.run(message)
time.sleep(0.1)
history_inf = history_inf + [(None, response)]
return ["",history_inf]
except Exception as e:
print("error:", e)
def ClearText():
return ""
def playsound1():
global Filename_Chatbot
print("playsound1: ", Filename_Chatbot)
try:
if Filename_Chatbot.split(".")[1] == 'wav':
soundfilename = Filename_Chatbot
print("soundfilename:", soundfilename)
# return None
# Filename_Chatbot = ""
return gr.update(value = soundfilename)
# return soundfilename
# yield soundfilename
except Exception as e:
print("playsound error:", e)
return None
def playsound2():
global Filename_Chatbot
try:
if Filename_Chatbot.split(".")[1] == 'wav':
soundfilename = Filename_Chatbot
print("soundfilename:", soundfilename)
# return None
# playsound(soundfilename)
mixer.init()
mixer.music.load(soundfilename)
mixer.music.play()
except Exception as e:
print("playsound2 error:", e)
return None
def HMI_Runing():
return [gr.update(visible=False), gr.update(visible=True)]
def HMI_Wait():
return [gr.update(visible=True), gr.update(visible=False)]
def ClearAudio():
print("clear audio ...")
return None
def Text2Sound_HMI():
global last_answer
global Filename_Chatbot
global Audio_output
print("Last answer in Text2Sound_HMI", last_answer)
# text_to_speech_2(last_answer)
text_to_speech_loc2(last_answer)
Filename_Chatbot = Audio_output[-1]
print("Filename_Chatbot in Text2Sound_HMI", Filename_Chatbot)
# try:
# if Filename_Chatbot.split(".")[1] == 'wav':
# soundfilename = Filename_Chatbot
# print("soundfilename:", soundfilename)
# # return None
# return gr.update(value = soundfilename)
# # return soundfilename
# # yield soundfilename
# except Exception as e:
# print("playsound error:", e)
# return None
def UpdateChatbot(Running_history):
if Running_history==[]:
timestr = time.strftime("%Y-%m-%d-%H:%M:%S")
# # Running_history = Running_history + [(None, 'Timestamp: '+timestr)]
# # yield Running_history
WelcomeStr = """
This is AI Assistant powered by MECH Core Team and it is connected remotely with GPT4. The following function is available for you.
1. Free Chat with AI assistant
2. Search Information and Engineering Data: Vector Database + Internet
3. Make specific task with tools: Text to Sound | Sound to Text | Doc summary
4. Code interpret: very powerful to modify/create/analyze documents (90%)
5. Text to Image | Image to Text: (forecast)
"""
Running_history = Running_history + [(None, timestr+'\n'+WelcomeStr)]
# ChatbotHistory = ChatbotHistory + [(None, timestr+'\n'+WelcomeStr)]
yield [Running_history, Running_history]
def UpdateChatbot2(Running_history):
'''
Not used
'''
global ChatbotHistory
timestr = time.strftime("%Y-%m-%d-%H:%M:%S")
# Running_history = Running_history + [(None, 'Timestamp: '+timestr)]
# # yield Running_history
WelcomeStr = """
This is AI Assistant powered by MECH Core Team.
It is connected remotely with GPT4. The following function is available for you.
1. Free Chat with AI assistant
2. Search Information and Engineering Data: Vector Database + Internet
3. Make specific task with tools:
- Text to Sound
- Sound to Text
- Doc summary
- Code interpret (Beta version)
- Text to Image (forecast)
"""
# # Running_history = Running_history + [(None, timestr+'\n'+WelcomeStr)]
ChatbotHistory = ChatbotHistory + [(None, timestr+'\n'+WelcomeStr)]
yield ChatbotHistory
global last_answer
last_answer = ""
def SingleTalk(WavFile, history5):
global last_request
global last_answer
global Filename_Chatbot
ConvertText = speech_to_text_loc(WavFile)
last_request = ConvertText
# ConvertText = speech_to_text(WavFile)
history5 = history5 + [(ConvertText, None)]
yield [None, None, history5]
message = ConvertText
history2 = history5
try:
response = agent.run(message)
time.sleep(0.1)
last_answer = response
history2 = history2 + [(None, response)]
yield [None, None, history2]
# yield ["", history2, None, None]
print ("response of chatbot:", response)
# real_content = response[-1:]
# print("real_content", real_content)
try:
# file_name = CheckFileinResp(response)
# print("file_name:", file_name)
# if file_name != "N/A":
# history2 = history2 + [(None, (file_name,))]
# Filename_Chatbot = file_name
# yield [None, None, history2]
file_names = CheckFileinResp(response)
print("file_name:", file_names)
if file_names != []:
for file_name in file_names:
if file_name != "":
history2 = history2 + [(None, (file_name, file_name))]
Filename_Chatbot = file_name
yield [None, None, history2]
except Exception as e:
print("No need to add file in chatbot:", e)
except Exception as e:
print("chathmi3 SingleTalk error:", e)
# history = history + [(message, None)]
print("History2 in Simple Talk: ", history2)
print("-" * 20)
print("-" * 20)
def vote(data: gr.LikeData):
if data.liked:
print("You upvoted this response: " + data.value)
else:
print("You downvoted this response: " + data.value)
with gr.Blocks() as demo:
# gr.Markdown("Start typing below and then click **SUBMIT** to see the output.")
# main = gr.ChatInterface(
# fake,
# title="STLA BABY - YOUR FRIENDLY GUIDE",
# description= "v0.3: Powered by MECH Core Team",
# )
# main.textbox.submit(chathmi3, [main.textbox, main.chatbot], [main.textbox, main.chatbot])
UserRecord = gr.State([])
# UserRecord.append()
# timestr = time.strftime("%Y-%m-%d-%H:%M:%S")
# # Running_history = Running_history + [(None, 'Timestamp: '+timestr)]
# # # yield Running_history
# WelcomeStr = """
# This is AI Assistant powered by MECH Core Team.
# It is connected remotely with GPT4. The following function is available for you.
# 1. Free Chat with AI assistant
# 2. Search Information and Engineering Data: Vector Database + Internet
# 3. Make specific task with tools:
# - Text to Sound
# - Sound to Text
# - Doc summary
# - Code interpret (Beta version)
# - Text to Image (forecast)
# """
# # Running_history = Running_history + [(None, timestr+'\n'+WelcomeStr)]
# UserRecord = UserRecord + [(None, timestr+'\n'+WelcomeStr)]
# UserRecord.append((None, timestr+'\n'+WelcomeStr))
with gr.Column() as main2:
title = gr.Markdown("""# <center> STLA BABY - YOUR FRIENDLY GUIDE
<center> v0.7.12: Powered by MECH Core Team - GPT4 REMOTE MODE"""),
chatbot = gr.Chatbot(
# avatar_images=((os.path.join(os.path.dirname(__file__),"User.png")), (os.path.join(os.path.dirname(__file__),"AI.png"))),
)
with gr.Row():
AddFile_button = gr.UploadButton("⤴️ File", file_count="multiple", scale= 0, variant="secondary",size='sm')
inputtext = gr.Textbox(
scale= 4,
label="",
placeholder = "Input Your Question",
show_label = False,
)
submit_button = gr.Button("SUBMIT", variant="primary", visible=True)
stop_button = gr.Button("STOP", variant='stop', visible=False)
with gr.Row():
agentchoice = gr.Dropdown(
# choices=['Zero Short Agent','Zero Short React','OpenAI Multi',
# 'Zero Short React 2','Zero Short Agent 2','None','Conversation Agent',
# 'Code Interpreter', 'Structured Zero Short Agent'],
choices=['None','Zero Short React 2','Structured Zero Short Agent'],
label="SELECT AI AGENT",
scale= 2,
show_label = True,
value=os.environ["agent_type"],
)
voice_input = gr.Audio(
source="microphone",
type="filepath",
scale= 1,
label= "INPUT",
)
voice_output = gr.Audio(
source="microphone",
type="filepath",
scale= 1,
interactive=False,
autoplay= True,
label= "OUTPUT",
)
# with gr.Column():
upload_button = gr.UploadButton("✡️ INGEST DB", file_count="multiple", scale= 0, variant="secondary")
summary_file_button = gr.UploadButton("📁 SUM DOC", file_count="multiple", scale= 0, variant="secondary")
# with gr.Column():
retry_button = gr.Button("RETRY")
clear_button = gr.Button("CLEAR")
with gr.Accordion(
label = "LOGS",
open = False,
):
# logs = gr.Textbox()
frash_logs = gr.Button("Update Logs ...")
logs = gr.Textbox(max_lines = 25)
"""
GUI Func
"""
AddFile_button.upload(User_Upload_file, [AddFile_button, chatbot], chatbot)
# upload_button.upload(func_upload_file, [upload_button, main.chatbot], main.chatbot)
chatbot.like(vote, None, None)
retry_button.click(retry, chatbot, chatbot).success(playsound1, None, voice_output).\
success(HMI_Wait, None, [submit_button, stop_button])#.\
# success(ClearAudio, None, voice_output)
# inf1 = inputtext.submit(chathmi3, [inputtext, chatbot], [inputtext, chatbot]).\
# then(playsound, None, voice_output)
# inf1 = inputtext.submit(chathmi3, [inputtext, chatbot], [inputtext, chatbot]).\
# then(HMI_Runing, None, [submit_button, stop_button]).\
# then(playsound, None, voice_output).\
# then(HMI_Wait, None, [submit_button, stop_button])
# inf4 = inputtext.submit(chathmi4, [inputtext, chatbot], [inputtext, chatbot, submit_button, stop_button])
''' open ai | new'''
# chathmi4 = normal, chathmi5 = callback
inf4 = inputtext.submit(chathmi4, [inputtext, chatbot], [inputtext, chatbot, submit_button, stop_button]).\
success(playsound1, None, voice_output, queue=True)#.\
# success(ClearAudio, None, voice_output)
''' Test '''
# inf4 = inputtext.submit(chatremote, [inputtext, chatbot], [inputtext, chatbot, submit_button, stop_button]).\
# success(playsound1, None, voice_output)
inf3 = submit_button.click(chathmi3, [inputtext, chatbot], [inputtext, chatbot]).\
success(HMI_Runing, None, [submit_button, stop_button], queue=True).\
success(playsound1, None, voice_output, queue=True).\
success(HMI_Wait, None, [submit_button, stop_button], queue=True)#.\
# success(ClearAudio, None, voice_output)
# inf2 = inputtext.submit(display_input, [inputtext, chatbot], chatbot).\
# then(Inference_Agent, chatbot, [inputtext, chatbot])
stop_button.click(read_logs, None, logs, cancels=[inf4,inf3]).\
then(HMI_Wait, None, [submit_button, stop_button], queue=True)
# stop_button.click(read_logs, None, logs, cancels=[inf2])
upload_button.upload(func_upload_file, [upload_button, chatbot], chatbot)
sum1 = summary_file_button.upload(Summary_upload_file, [summary_file_button, chatbot], chatbot)
agentchoice.change(SetAgent, agentchoice, None)
frash_logs.click(read_logs, None, logs)
voice_input.stop_recording(SingleTalk, [voice_input, chatbot], [voice_input, voice_output, chatbot], queue=True).\
success(Text2Sound_HMI,None,None, queue=True).\
success(playsound1, None, voice_output, queue=True) #.\
# success(HMI_Wait, None, [submit_button, stop_button]).\
# success(ClearAudio, None, voice_output)
clear_button.click(clearall, None, [chatbot, submit_button, stop_button], voice_output, cancels=[inf4,inf3,sum1])
# voice_output.end(ClearAudio, None, voice_output)
# def clear_voice():
# print("clear audio ...")
# voice_output.clear()
# voice_output.play(clear_voice, None, None)
# demo.load(read_logs, None, logs, every=1)
demo.load(UpdateChatbot, UserRecord, [chatbot, UserRecord])
# load(UpdateChatbot, chatbot, chatbot, every=5)
# demo(api_name="Update_Chatbot")
# demo = gr.Interface(
# chathmi,
# ["text", "state"],
# [chatbot, "state"],
# allow_flagging="never",
# )
def CreatDb_P():
global vectordb_p
index_name = 'stla-baby'
loader = DirectoryLoader('./documents', glob='**/*.txt')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
split_docs = text_splitter.split_documents(documents)
print(split_docs)
pinecone.Index(index_name).delete(delete_all=True, namespace='')
vectordb_p = Pinecone.from_documents(split_docs, embeddings, index_name = "stla-baby")
print("Pinecone Updated Done")
print(index.describe_index_stats())
def QAQuery_p(question: str):
global vectordb_p
global agent
global Choice
global CurrentAgent
# vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
retriever = vectordb_p.as_retriever()
retriever.search_kwargs['k'] = int(os.environ["search_kwargs_k"])
# retriever.search_kwargs['fetch_k'] = 100
# if agent == agent_ZEROSHOT_REACT_2 or agent == agent_ZEROSHOT_AGENT_2:
if CurrentAgent in ListAgentWithRemoteGPT:
print("--------------- QA with Remote --------------")
qa = RetrievalQA.from_chain_type(llm=GPTfake, chain_type="stuff",
retriever=retriever, return_source_documents = True,
verbose = True)
else:
print("--------------- QA with API --------------")
qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff",
retriever=retriever, return_source_documents = True,
verbose = True)
# qa = VectorDBQA.from_chain_type(llm=chat, chain_type="stuff", vectorstore=vectordb, return_source_documents=True)
# res = qa.run(question)
res = qa({"query": question})
print("-" * 20)
# print("Question:", question)
# print("Answer:", res)
# print("Answer:", res['result'])
print("-" * 20)
# print("Source:", res['source_documents'])
response = res['result']
# response = res['source_documents']
source = res['source_documents']
return response, source
# def CreatDb():
# '''
# Funtion to creat chromadb DB based on with all docs
# '''
# global vectordb
# loader = DirectoryLoader('./documents', glob='**/*.txt')
# documents = loader.load()
# text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
# split_docs = text_splitter.split_documents(documents)
# print(split_docs)
# vectordb = Chroma.from_documents(split_docs, embeddings, persist_directory='db')
# vectordb.persist()
def QAQuery(question: str):
global vectordb
# vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
retriever = vectordb.as_retriever()
retriever.search_kwargs['k'] = 3
# retriever.search_kwargs['fetch_k'] = 100
qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff", retriever=retriever, return_source_documents = True)
# qa = VectorDBQA.from_chain_type(llm=chat, chain_type="stuff", vectorstore=vectordb, return_source_documents=True)
# res = qa.run(question)
res = qa({"query": question})
print("-" * 20)
print("Question:", question)
# print("Answer:", res)
print("Answer:", res['result'])
print("-" * 20)
print("Source:", res['source_documents'])
response = res['result']
return response
# Used to complete content
def completeText(Text):
deployment_id="Chattester"
prompt = Text
completion = openai.Completion.create(deployment_id=deployment_id,
prompt=prompt, temperature=0)
print(f"{prompt}{completion['choices'][0]['text']}.")
# Used to chat
def chatText(Text):
deployment_id="Chattester"
conversation = [{"role": "system", "content": "You are a helpful assistant."}]
user_input = Text
conversation.append({"role": "user", "content": user_input})
response = openai.ChatCompletion.create(messages=conversation,
deployment_id="Chattester")
print("\n" + response["choices"][0]["message"]["content"] + "\n")
def GUI_launcher():
if SysLock == "1":
demo.queue(concurrency_count=3).launch(auth=(username, password), server_name="0.0.0.0", server_port=7860)
else:
demo.queue(concurrency_count=3).launch(server_name="0.0.0.0", server_port=7860)
if __name__ == '__main__':
# chatText("what is AI?")
# CreatDb()
# QAQuery("what is COFOR ?")
# CreatDb_P()
# QAQuery_p("what is PDP ?")
# question = "what is PDP?"
# output = asyncio.run(start_playwright(question))
# asyncio.run(TestCodeInterpret('Plot the bitcoin chart of 2023 YTD'))
GUI_launcher()
# if SysLock == "1":
# demo.queue(concurrency_count=3).launch(auth=(username, password), server_name="0.0.0.0", server_port=7860)
# else:
# demo.queue(concurrency_count=3).launch(server_name="0.0.0.0", server_port=7860)
pass
|