Spaces:
Runtime error
Runtime error
File size: 28,484 Bytes
98d76bd 9454822 ce580ca 98d76bd dc409a3 98d76bd 9454822 98d76bd ce580ca 98d76bd ce580ca 98d76bd ce580ca 98d76bd f6923bc 98d76bd f6923bc ce580ca 98d76bd ce580ca da25227 ce580ca da25227 98d76bd ce580ca da25227 98d76bd e49dc64 1d35a0c dc409a3 f6923bc 1d35a0c f6923bc 1d35a0c f6923bc e49dc64 1d35a0c e49dc64 f6923bc ce580ca f6923bc e49dc64 f6923bc 944fcc4 f6923bc 1d35a0c f6923bc 1d35a0c f6923bc e49dc64 f6923bc e49dc64 ce580ca e49dc64 ce580ca e49dc64 ce580ca e49dc64 f6923bc e49dc64 f6923bc e49dc64 ce580ca e49dc64 ce580ca e49dc64 ce580ca e49dc64 ce580ca e49dc64 f6923bc e49dc64 f6923bc e49dc64 f6923bc 9454822 1298db9 b33cb3c 73f83b1 f6923bc 4cabc00 f6923bc 73f83b1 944fcc4 f6923bc 944fcc4 f6923bc 944fcc4 d5166a8 944fcc4 73f83b1 f6923bc 944fcc4 f6923bc f8fc8c8 b33cb3c 944fcc4 f6923bc 944fcc4 b33cb3c f6923bc b33cb3c f8fc8c8 b33cb3c 944fcc4 b33cb3c 944fcc4 b33cb3c 944fcc4 b33cb3c 944fcc4 b33cb3c 56274ac f6923bc b33cb3c f6923bc b33cb3c 944fcc4 b33cb3c f6923bc a43a340 f6923bc b33cb3c 944fcc4 f6923bc b33cb3c f6923bc b33cb3c f8fc8c8 f6e71bf 73f83b1 4cabc00 73f83b1 1298db9 4dac01b f6923bc b33cb3c 4cabc00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 |
# Standard Libraries
import os
import json
import time
import asyncio
import logging
import gc
import re
import traceback
from pathlib import Path
from datetime import datetime
from typing import List, Dict, Union, Tuple, Optional, Any
from dataclasses import dataclass, field
import zipfile
# Machine Learning and Deep Learning Libraries
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.cuda.amp import autocast
from torch.utils.data import DataLoader
import tensorflow as tf
import keras
import numpy as np
# Hugging Face and Transformers
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
from sentence_transformers import SentenceTransformer
from datasets import load_dataset, Dataset, concatenate_datasets
from huggingface_hub import login
# FAISS and PEFT
import faiss
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, TaskType, PeftModel
# LangChain - updated imports as per recent deprecations
from langchain_community.vectorstores import FAISS # Updated import
from langchain_community.embeddings import HuggingFaceEmbeddings # Updated import
from langchain_community.document_loaders import TextLoader # Updated import
from langchain.text_splitter import RecursiveCharacterTextSplitter
# Data Science and Visualization Libraries
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
from sklearn.metrics import classification_report, confusion_matrix
# Development and Testing
import pytest
from unittest.mock import Mock, patch
# External Tools and APIs
import wandb
import requests
import gradio as gr
import IPython.display as display # Required for IPython display functionality
from dotenv import load_dotenv
from tqdm.auto import tqdm
# Suppress Warnings
import warnings
warnings.filterwarnings('ignore')
# Ensure Hugging Face login
try:
hf_token = os.getenv("HF_TOKEN")
if hf_token:
login(token=hf_token)
print("Login successful!")
except Exception as e:
print("Hugging Face Login failed:", e)
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:64,garbage_collection_threshold:0.8,expandable_segments:True'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class ModelManager:
"""Handles model loading and resource management"""
@staticmethod
def verify_and_extract_model(checkpoint_zip_path: str, extracted_model_dir: str) -> str:
"""Verify and extract the model if it's not already extracted"""
if not os.path.exists(extracted_model_dir):
# Unzip the model if it hasnβt been extracted yet
with zipfile.ZipFile(checkpoint_zip_path, 'r') as zip_ref:
zip_ref.extractall(extracted_model_dir)
logger.info(f"Extracted model to: {extracted_model_dir}")
else:
logger.info(f"Model already extracted: {extracted_model_dir}")
return extracted_model_dir
@staticmethod
def clear_gpu_memory():
"""Clear GPU memory cache"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
class PearlyBot:
def __init__(self, model_zip_path: str = "./checkpoint-500.zip", model_dir: str = "./checkpoint-500"):
self.model_dir = ModelManager.verify_and_extract_model(model_zip_path, model_dir)
self.setup_model(self.model_dir)
self.setup_rag()
self.conversation_history = []
self.last_interaction_time = time.time()
self.interaction_cooldown = 1.0 # seconds
def setup_model(self, model_path: str):
"""Initialize the model with proper error handling"""
try:
logger.info("Starting model initialization...")
ModelManager.clear_gpu_memory()
# Load tokenizer
try:
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.tokenizer.pad_token = self.tokenizer.eos_token
logger.info("Tokenizer loaded successfully")
except Exception as e:
logger.error(f"Failed to load tokenizer: {str(e)}")
raise
# Load model
try:
self.model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
load_in_8bit=True,
torch_dtype=torch.float16,
low_cpu_mem_usage=True
)
self.model.eval()
logger.info("Model loaded successfully")
except Exception as e:
logger.error(f"Failed to load model: {str(e)}")
raise
except Exception as e:
logger.error(f"Error in model setup: {str(e)}")
raise
def setup_rag(self):
try:
logger.info("Setting up RAG system...")
# Load your knowledge base content
knowledge_base = {
"triage_scenarios.txt": """Medical Triage Scenarios and Responses:
EMERGENCY (999) SCENARIOS:
1. Cardiovascular:
- Chest pain/pressure
- Heart attack symptoms
- Irregular heartbeat with dizziness
Response: Immediate 999 call, sit/lie down, chew aspirin if available
2. Respiratory:
- Severe breathing difficulty
- Choking
- Unable to speak full sentences
Response: 999, sitting position, clear airway
3. Neurological:
- Stroke symptoms (FAST)
- Seizures
- Unconsciousness
Response: 999, recovery position if unconscious
4. Trauma:
- Severe bleeding
- Head injuries with confusion
- Major burns
Response: 999, apply direct pressure to bleeding
URGENT CARE (111) SCENARIOS:
1. Moderate Symptoms:
- Persistent fever
- Non-severe infections
- Minor injuries
Response: 111 contact, monitor symptoms
2. Minor Emergencies:
- Small cuts needing stitches
- Sprains and strains
- Mild allergic reactions
Response: 111 or urgent care visit
GP APPOINTMENT SCENARIOS:
1. Routine Care:
- Chronic condition review
- Medication reviews
- Non-urgent symptoms
Response: Book routine GP appointment
2. Preventive Care:
- Vaccinations
- Health screenings
- Regular check-ups
Response: Schedule with GP reception""",
"emergency_detection.txt": """Enhanced Emergency Detection Criteria:
IMMEDIATE LIFE THREATS:
1. Cardiac Symptoms:
- Chest pain/pressure/tightness
- Pain spreading to arms/jaw/neck
- Sweating with nausea
- Shortness of breath
2. Breathing Problems:
- Severe shortness of breath
- Blue lips or face
- Unable to complete sentences
- Choking/airway blockage
3. Neurological:
- FAST (Face, Arms, Speech, Time)
- Sudden confusion
- Severe headache
- Seizures
- Loss of consciousness
4. Severe Trauma:
- Heavy bleeding
- Deep wounds
- Head injury with confusion
- Severe burns
- Broken bones with deformity
5. Anaphylaxis:
- Sudden swelling
- Difficulty breathing
- Rapid onset rash
- Light-headedness
URGENT BUT NOT IMMEDIATE:
1. Moderate Symptoms:
- Persistent fever
- Dehydration
- Non-severe infections
- Minor injuries
2. Worsening Conditions:
- Increasing pain
- Progressive symptoms
- Medication reactions
RESPONSE PROTOCOLS:
1. For Life Threats:
- Immediate 999 call
- Clear first aid instructions
- Stay on line until help arrives
2. For Urgent Care:
- 111 contact
- Monitor for worsening
- Document symptoms""",
"gp_booking.txt": """GP Appointment Booking Templates:
APPOINTMENT TYPES:
1. Routine Appointments:
Template: "I need to book a routine appointment for [condition]. My availability is [times/dates]. My GP is Dr. [name] if available."
2. Follow-up Appointments:
Template: "I need a follow-up appointment regarding [condition] discussed on [date]. My previous appointment was with Dr. [name]."
3. Medication Reviews:
Template: "I need a medication review for [medication]. My last review was [date]."
BOOKING INFORMATION NEEDED:
1. Patient Details:
- Full name
- Date of birth
- NHS number (if known)
- Registered GP practice
2. Appointment Details:
- Nature of appointment
- Preferred times/dates
- Urgency level
- Special requirements
3. Contact Information:
- Phone number
- Alternative contact
- Preferred contact method
BOOKING PROCESS:
1. Online Booking:
- NHS app instructions
- Practice website guidance
- System navigation help
2. Phone Booking:
- Best times to call
- Required information
- Queue management tips
3. Special Circumstances:
- Interpreter needs
- Accessibility requirements
- Transport arrangements""",
"cultural_sensitivity.txt": """Cultural Sensitivity Guidelines:
CULTURAL AWARENESS:
1. Religious Considerations:
- Prayer times
- Religious observations
- Dietary restrictions
- Gender preferences for care
- Religious festivals/fasting periods
2. Language Support:
- Interpreter services
- Multi-language resources
- Clear communication methods
- Family involvement preferences
3. Cultural Beliefs:
- Traditional medicine practices
- Cultural health beliefs
- Family decision-making
- Privacy customs
COMMUNICATION APPROACHES:
1. Respectful Interaction:
- Use preferred names/titles
- Appropriate greetings
- Non-judgmental responses
- Active listening
2. Language Usage:
- Clear, simple terms
- Avoid medical jargon
- Confirm understanding
- Respect silence/pauses
3. Non-verbal Communication:
- Eye contact customs
- Personal space
- Body language awareness
- Gesture sensitivity
SPECIFIC CONSIDERATIONS:
1. South Asian Communities:
- Family involvement
- Gender sensitivity
- Traditional medicine
- Language diversity
2. Middle Eastern Communities:
- Gender-specific care
- Religious observations
- Family hierarchies
- Privacy concerns
3. African/Caribbean Communities:
- Traditional healers
- Community involvement
- Historical medical mistrust
- Cultural specific conditions
4. Eastern European Communities:
- Direct communication
- Family involvement
- Medical documentation
- Language support
INCLUSIVE PRACTICES:
1. Appointment Scheduling:
- Religious holidays
- Prayer times
- Family availability
- Interpreter needs
2. Treatment Planning:
- Cultural preferences
- Traditional practices
- Family involvement
- Dietary requirements
3. Support Services:
- Community resources
- Cultural organizations
- Language services
- Social support""",
"service_boundaries.txt": """Service Limitations and Professional Boundaries:
CLEAR BOUNDARIES:
1. Medical Advice:
- No diagnoses
- No prescriptions
- No treatment recommendations
- No medical procedures
- No second opinions
2. Emergency Services:
- Clear referral criteria
- Documented responses
- Follow-up protocols
- Handover procedures
3. Information Sharing:
- Confidentiality limits
- Data protection
- Record keeping
- Information governance
PROFESSIONAL CONDUCT:
1. Communication:
- Professional language
- Emotional boundaries
- Personal distance
- Service scope
2. Service Delivery:
- No financial transactions
- No personal relationships
- Clear role definition
- Professional limits"""
}
os.makedirs("knowledge_base", exist_ok=True)
# Create and process documents
documents = []
for filename, content in knowledge_base.items():
with open(f"knowledge_base/{filename}", "w") as f:
f.write(content)
documents.append(content)
# Setup embeddings and vector store
self.embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2"
)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=300,
chunk_overlap=100
)
texts = text_splitter.split_text("\n\n".join(documents))
self.vector_store = FAISS.from_texts(texts, self.embeddings)
logger.info("RAG system setup complete")
except Exception as e:
logger.error(f"Error setting up RAG: {str(e)}")
raise
def get_relevant_context(self, query):
try:
docs = self.vector_store.similarity_search(query, k=3)
return "\n".join(doc.page_content for doc in docs)
except Exception as e:
logger.error(f"Error retrieving context: {str(e)}")
return ""
@torch.inference_mode()
def generate_response(self, message: str, history: list) -> str:
"""Generate response using both fine-tuned model and RAG"""
try:
# Rate limiting
current_time = time.time()
if current_time - self.last_interaction_time < self.interaction_cooldown:
time.sleep(self.interaction_cooldown)
# Clear GPU memory before generation
ModelManager.clear_gpu_memory()
# Get RAG context
context = self.get_relevant_context(message)
# Format conversation history
conv_history = "\n".join([
f"User: {user}\nAssistant: {assistant}"
for user, assistant in history[-3:] # Keep last 3 turns
])
# Create prompt
prompt = f"""<start_of_turn>system
Using these medical guidelines:
{context}
Previous conversation:
{conv_history}
Guidelines:
1. Assess symptoms and severity
2. Ask relevant follow-up questions
3. Direct to appropriate care (999, 111, or GP)
4. Show empathy and cultural sensitivity
5. Never diagnose or recommend treatments
<end_of_turn>
<start_of_turn>user
{message}
<end_of_turn>
<start_of_turn>assistant"""
# Generate response
try:
inputs = self.tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=512
).to(self.model.device)
outputs = self.model.generate(
**inputs,
max_new_tokens=256,
min_new_tokens=20,
do_sample=True,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.2,
no_repeat_ngram_size=3
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response.split("<start_of_turn>assistant")[-1].strip()
if "<end_of_turn>" in response:
response = response.split("<end_of_turn>")[0].strip()
self.last_interaction_time = time.time()
return response
except torch.cuda.OutOfMemoryError:
ModelManager.clear_gpu_memory()
logger.error("GPU out of memory, cleared cache and retrying...")
return "I apologize, but I'm experiencing technical difficulties. Please try again."
except Exception as e:
logger.error(f"Error generating response: {str(e)}")
return "I apologize, but I encountered an error. Please try again."
def handle_feedback(self, message: str, response: str, feedback: int):
"""Handle user feedback for responses"""
try:
timestamp = datetime.now().isoformat()
feedback_data = {
"message": message,
"response": response,
"feedback": feedback,
"timestamp": timestamp
}
# Log feedback
logger.info(f"Feedback received: {feedback_data}")
# Here you could:
# 1. Store feedback in a database
# 2. Send to monitoring system
# 3. Use for model improvements
return True
except Exception as e:
logger.error(f"Error handling feedback: {e}")
return False
def __del__(self):
"""Cleanup resources"""
try:
if hasattr(self, 'model'):
del self.model
ModelManager.clear_gpu_memory()
except Exception as e:
logger.error(f"Error in cleanup: {e}")
def process_feedback(positive: bool, comment: str, history: List[Dict[str, str]]):
try:
if not history or len(history) < 2:
return gr.update(value="")
last_user_msg = history[-2]["content"] if isinstance(history[-2], dict) else history[-2][0]
last_bot_msg = history[-1]["content"] if isinstance(history[-1], dict) else history[-1][1]
bot.handle_feedback(
message=last_user_msg,
response=last_bot_msg,
feedback=1 if positive else -1
)
return gr.update(value="")
except Exception as e:
logger.error(f"Error processing feedback: {e}")
return gr.update(value="")
def create_demo():
"""Set up Gradio interface for the chatbot with enhanced styling and functionality."""
try:
# Initialize bot
bot = PearlyBot()
def chat(message: str, history: list):
"""Handle chat interactions"""
try:
if not message.strip():
return history
# Generate response
response = bot.generate_response(message, history)
# Update history with proper formatting
history.append({
"role": "user",
"content": message
})
history.append({
"role": "assistant",
"content": response
})
return history
except Exception as e:
logger.error(f"Chat error: {e}")
return history + [{
"role": "assistant",
"content": "I apologize, but I'm experiencing technical difficulties. For emergencies, please call 999."
}]
def process_feedback(positive: bool, comment: str, history: list):
try:
if not history or len(history) < 2:
return gr.update(value="")
last_user_msg = history[-2]["content"] if isinstance(history[-2], dict) else history[-2][0]
last_bot_msg = history[-1]["content"] if isinstance(history[-1], dict) else history[-1][1]
bot.handle_feedback(
message=last_user_msg,
response=last_bot_msg,
feedback=1 if positive else -1
)
return gr.update(value="")
except Exception as e:
logger.error(f"Error processing feedback: {e}")
return gr.update(value="")
# Create enhanced Gradio interface
with gr.Blocks(theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="indigo",
neutral_hue="slate",
font=gr.themes.GoogleFont("Inter")
)) as demo:
# Custom CSS for enhanced styling
gr.HTML("""
<style>
.container { max-width: 900px; margin: auto; }
.header { text-align: center; padding: 20px; }
.emergency-banner {
background-color: #ff4444;
color: white;
padding: 10px;
text-align: center;
font-weight: bold;
margin-bottom: 20px;
}
.feature-card {
padding: 15px;
border-radius: 10px;
text-align: center;
transition: transform 0.2s;
color: white;
font-weight: bold;
}
.feature-card:nth-child(1) { background: linear-gradient(135deg, #2193b0, #6dd5ed); }
.feature-card:nth-child(2) { background: linear-gradient(135deg, #834d9b, #d04ed6); }
.feature-card:nth-child(3) { background: linear-gradient(135deg, #ff4b1f, #ff9068); }
.feature-card:nth-child(4) { background: linear-gradient(135deg, #38ef7d, #11998e); }
.feature-card:hover {
transform: translateY(-5px);
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
.feature-card span.emoji {
font-size: 2em;
display: block;
margin-bottom: 10px;
}
.message-textbox textarea { resize: none; }
#thumb-up, #thumb-down {
min-width: 60px;
padding: 8px;
margin: 5px;
}
.chatbot-message {
padding: 12px;
margin: 8px 0;
border-radius: 8px;
}
.user-message { background-color: #e3f2fd; }
.assistant-message { background-color: #f5f5f5; }
.feedback-section {
margin-top: 20px;
padding: 15px;
border-radius: 8px;
background-color: #f8f9fa;
}
</style>
""")
# Event Handlers - Moved inside the gr.Blocks context
msg.submit(chat, [msg, chatbot], [chatbot]).then(
lambda: gr.update(value=""), None, [msg]
)
submit.click(chat, [msg, chatbot], [chatbot]).then(
lambda: gr.update(value=""), None, [msg]
)
# Feedback handlers
feedback_positive.click(
lambda h: process_feedback(True, feedback_text.value, h),
inputs=[chatbot],
outputs=[feedback_text]
)
feedback_negative.click(
lambda h: process_feedback(False, feedback_text.value, h),
inputs=[chatbot],
outputs=[feedback_text]
)
# Clear chat
clear.click(lambda: None, None, chatbot)
# Add queue for handling multiple users
demo.queue(concurrency_count=1, max_size=10)
# Emergency Banner
gr.HTML("""
<div class="emergency-banner">
π¨ For medical emergencies, always call 999 immediately π¨
</div>
""")
# Header Section
with gr.Row(elem_classes="header"):
gr.Markdown("""
# GP Medical Triage Assistant - Pearly
Welcome to your personal medical triage assistant. I'm here to help assess your symptoms and guide you to appropriate care.
""")
# Main Features Grid
gr.HTML("""
<div class="features-grid">
<div class="feature-card">
<span class="emoji">π₯</span>
<div>GP Appointments</div>
</div>
<div class="feature-card">
<span class="emoji">π</span>
<div>Symptom Assessment</div>
</div>
<div class="feature-card">
<span class="emoji">β‘</span>
<div>Urgent Care Guide</div>
</div>
<div class="feature-card">
<span class="emoji">π</span>
<div>Medical Advice</div>
</div>
</div>
""")
# Chat Interface
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(
value=[{
"role": "assistant",
"content": "Hello! I'm Pearly, your GP medical assistant. How can I help you today?"
}],
height=500,
elem_id="chatbot",
type="messages",
show_label=False
)
with gr.Row():
msg = gr.Textbox(
label="Your message",
placeholder="Type your message here...",
lines=2,
scale=4,
autofocus=True,
submit_on_enter=True
)
submit = gr.Button("Send", variant="primary", scale=1)
with gr.Column(scale=1):
# Quick Actions Panel
gr.Markdown("### Quick Actions")
emergency_btn = gr.Button("π¨ Emergency Info", variant="secondary")
nhs_111_btn = gr.Button("π NHS 111 Info", variant="secondary")
booking_btn = gr.Button("π
GP Booking", variant="secondary")
# Controls and Feedback
gr.Markdown("### Controls")
clear = gr.Button("ποΈ Clear Chat")
gr.Markdown("### Feedback")
with gr.Row():
feedback_positive = gr.Button("π", elem_id="thumb-up")
feedback_negative = gr.Button("π", elem_id="thumb-down")
feedback_text = gr.Textbox(
label="Additional comments",
placeholder="Tell us more...",
lines=2,
visible=True
)
feedback_submit = gr.Button("Submit Feedback", visible=True)
# Examples and Information
with gr.Accordion("Example Messages", open=False):
gr.Examples([
["I've been having severe headaches for the past week"],
["I need to book a routine checkup"],
["I'm feeling very anxious lately and need help"],
["My child has had a fever for 2 days"],
["I need information about COVID-19 testing"]
], inputs=msg)
with gr.Accordion("NHS Services Guide", open=False):
gr.Markdown("""
### Emergency Services (999)
- Life-threatening emergencies
- Severe injuries
- Suspected heart attack or stroke
### NHS 111
- Urgent but non-emergency situations
- Medical advice needed
- Unsure where to go
### GP Services
- Routine check-ups
- Non-urgent medical issues
- Prescription renewals
""")
return demo
except Exception as e:
logger.error(f"Error creating demo: {e}")
raise
if __name__ == "__main__":
try:
# Initialize logging
logging.basicConfig(level=logging.INFO)
# Load environment variables
load_dotenv()
# Create and launch demo
demo = create_demo()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
)
except Exception as e:
logger.error(f"Application startup failed: {e}")
raise
|