Spaces:
Running
Running
File size: 26,375 Bytes
6b10c76 ed8b7cc 91858b4 6b10c76 995a40e 6b10c76 91858b4 6b10c76 91858b4 6b10c76 91858b4 6b10c76 e0123f2 6b10c76 e0123f2 6b10c76 a0631cd 02fc9e7 9e30ce1 e0123f2 6b10c76 7d4aeb9 f971c71 6b10c76 3e446f0 a317caa 6b10c76 e0123f2 6b10c76 91858b4 6b10c76 91858b4 48c261a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
# Cell 2: Import necessary libraries
import time
import fitz # PyMuPDF
import numpy as np
import pickle
import os
import dill
import logging
import asyncio
import networkx as nx # Import networkx here
from mistralai import Mistral
from annoy import AnnoyIndex
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity, euclidean_distances
from sklearn.preprocessing import normalize
from rank_bm25 import BM25Okapi
from gensim.models import Word2Vec
from typing import List, Optional, Tuple
import tempfile
# Cell 3: Set up logging and Mistral client
logger = logging.getLogger(__name__)
api_key = "VHTGVu2YH2WxcTbfpkK00wAidHU12Stn"
client = Mistral(api_key=api_key)
# Cell 4: Function to get embeddings with rate limiting
def get_text_embedding_with_rate_limit(text_list, initial_delay=2, max_retries=10):
embeddings = []
for text in text_list:
retries = 0
delay = initial_delay
while retries < max_retries:
try:
token_count = len(text.split())
if token_count > 16384:
print("Warning: Text chunk exceeds the token limit. Truncating the text.")
text = " ".join(text.split()[:16384])
response = client.embeddings.create(model="mistral-embed", inputs=[text])
embeddings.extend([embedding.embedding for embedding in response.data])
time.sleep(delay)
break
except Exception as e:
retries += 1
print(f"Rate limit exceeded, retrying in {delay} seconds... (Attempt {retries}/{max_retries})")
time.sleep(delay)
delay *= 2
if retries == max_retries:
print("Max retries reached. Skipping this chunk.")
break
return embeddings
# Cell 5: Function to store embeddings in a vector database
def store_embeddings_in_vector_db(
pdf_path: str,
vector_db_path: str,
annoy_index_path: str,
chunk_size: int = 2048,
overlap: int = 200,
num_trees: int = 10
):
doc = fitz.open(pdf_path)
all_embeddings = []
all_texts = []
total_pages = doc.page_count
logging.info(f"Processing PDF: {pdf_path} with {total_pages} pages.")
for page_num in range(total_pages):
page = doc.load_page(page_num)
text = page.get_text()
if text.strip():
chunks = split_text_into_chunks(text, chunk_size, overlap)
embeddings = get_text_embedding_with_rate_limit(chunks)
all_embeddings.extend(embeddings)
all_texts.extend(chunks)
logging.info(f"Processed page {page_num + 1}/{total_pages}, extracted {len(chunks)} chunks.")
else:
logging.warning(f"No text found on page {page_num + 1}.")
embeddings_np = np.array(all_embeddings).astype('float32')
with open(vector_db_path, "wb") as f:
dill.dump({'embeddings': embeddings_np, 'texts': all_texts}, f)
logging.info(f"Stored embeddings and texts to {vector_db_path}.")
if os.path.exists(annoy_index_path):
os.remove(annoy_index_path)
logging.info(f"Existing Annoy index at {annoy_index_path} removed.")
embedding_dim = embeddings_np.shape[1]
annoy_index = AnnoyIndex(embedding_dim, 'angular')
for i, embedding in enumerate(embeddings_np):
annoy_index.add_item(i, embedding)
annoy_index.build(num_trees)
annoy_index.save(annoy_index_path)
logging.info(f"Annoy index built with {len(all_embeddings)} items and saved to {annoy_index_path}.")
# Cell 6: Helper functions for text processing
def split_text_into_chunks(text: str, chunk_size: int = 2048, overlap: int = 200) -> List[str]:
tokens = text.split()
chunks = []
start = 0
while start < len(tokens):
end = start + chunk_size
chunk = " ".join(tokens[start:end])
chunks.append(chunk)
start += chunk_size - overlap
return chunks
class MistralRAGChatbot:
def __init__(self, vector_db_path: str, annoy_index_path: str):
self.embeddings, self.texts = self.load_vector_db(vector_db_path)
self.annoy_index = self.load_annoy_index(annoy_index_path, self.embeddings.shape[1])
self.tfidf_matrix, self.tfidf_vectorizer = self.calculate_tfidf(self.texts)
self.bm25 = BM25Okapi([text.split() for text in self.texts])
self.word2vec_model = self.train_word2vec(self.texts)
self.reranking_methods = {
'reciprocal_rank_fusion': self.reciprocal_rank_fusion,
'weighted_score_fusion': self.weighted_score_fusion,
'semantic_similarity': self.semantic_similarity_reranking,
'advanced_fusion': self.advanced_fusion_retrieval
}
logging.info("MistralRAGChatbot initialized successfully.")
def load_vector_db(self, vector_db_path: str) -> Tuple[np.ndarray, List[str]]:
with open(vector_db_path, "rb") as f:
data = dill.load(f)
embeddings = np.array(data['embeddings'], dtype='float32')
texts = data['texts']
logging.info(f"Loaded vector database from {vector_db_path} with {len(texts)} entries.")
return embeddings, texts
def load_annoy_index(self, annoy_index_path: str, embedding_dim: int) -> AnnoyIndex:
annoy_index = AnnoyIndex(embedding_dim, 'angular')
annoy_index.load(annoy_index_path)
logging.info(f"Loaded Annoy index from {annoy_index_path}.")
return annoy_index
def calculate_tfidf(self, texts: List[str]) -> Tuple[np.ndarray, TfidfVectorizer]:
vectorizer = TfidfVectorizer(stop_words='english')
tfidf_matrix = vectorizer.fit_transform(texts)
logging.info("TF-IDF matrix calculated.")
return tfidf_matrix, vectorizer
def train_word2vec(self, texts: List[str]) -> Word2Vec:
tokenized_texts = [text.split() for text in texts]
model = Word2Vec(sentences=tokenized_texts, vector_size=100, window=5, min_count=1, workers=4)
logging.info("Word2Vec model trained.")
return model
async def get_text_embedding(self, text: str, model: str = "mistral-embed") -> np.ndarray:
try:
response = await client.embeddings.create_async(model=model, inputs=[text])
return np.array(response.data[0].embedding)
except Exception as e:
logging.error(f"Error fetching embedding: {e}")
return np.zeros((1024,)) # Assuming embedding size of 384
def advanced_fusion_retrieval(self, user_query: str, docs: List[dict]) -> List[dict]:
query_embedding = self.create_embeddings([user_query])[0]
vector_scores = {doc['index']: doc['score'] for doc in docs if doc['method'] == 'annoy'}
bm25_scores = {doc['index']: doc['score'] for doc in docs if doc['method'] == 'bm25'}
sim_graph = nx.Graph()
sim_matrix = cosine_similarity(self.embeddings)
for i in range(len(self.embeddings)):
for j in range(i + 1, len(self.embeddings)):
if sim_matrix[i, j] > 0.5:
sim_graph.add_edge(i, j, weight=sim_matrix[i, j])
pagerank_scores = np.array(list(nx.pagerank(sim_graph, weight='weight').values()))
combined_scores = {}
for doc in docs:
idx = doc['index']
combined_scores[idx] = (
0.5 * vector_scores.get(idx, 0) +
0.3 * bm25_scores.get(idx, 0) +
0.2 * pagerank_scores[idx]
)
sorted_indices = sorted(combined_scores, key=combined_scores.get, reverse=True)
return [{'text': self.texts[i], 'method': 'advanced_fusion', 'score': combined_scores[i], 'index': i} for i in sorted_indices[:5]]
def create_embeddings(self, text_list: List[str]) -> np.ndarray:
expected_dim = 1024 # The dimension expected by the Annoy index
embeddings = []
for text in text_list:
word_vectors = [self.word2vec_model.wv[token] for token in text.split() if token in self.word2vec_model.wv]
avg_embedding = np.mean(word_vectors, axis=0, dtype=np.float32) if word_vectors else np.zeros(self.word2vec_model.vector_size, dtype=np.float32)
if avg_embedding.shape[0] < expected_dim:
avg_embedding = np.pad(avg_embedding, (0, expected_dim - avg_embedding.shape[0]), 'constant')
elif avg_embedding.shape[0] > expected_dim:
avg_embedding = avg_embedding[:expected_dim]
embeddings.append(avg_embedding)
return np.array(embeddings, dtype=np.float32)
async def generate_response_with_rag(
self,
user_query: str,
model: str = "mistral-small-latest",
top_k: int = 10,
response_style: str = "Detailed",
selected_retrieval_methods: Optional[List[str]] = None,
selected_reranking_methods: Optional[List[str]] = None
) -> Tuple[str, List[str], List[dict]]:
if not selected_retrieval_methods:
selected_retrieval_methods = ['annoy', 'tfidf', 'bm25', 'word2vec', 'euclidean', 'jaccard']
if not selected_reranking_methods:
selected_reranking_methods = ['reciprocal_rank_fusion', 'weighted_score_fusion', 'advanced_fusion']
query_embedding = await self.get_text_embedding(user_query)
retrieved_docs = self.retrieve_documents(user_query, query_embedding, top_k, selected_retrieval_methods)
reranked_docs = self.rerank_documents(user_query, retrieved_docs, selected_reranking_methods)
context = "\n\n".join([doc['text'] for doc in reranked_docs[:5]])
prompt = self.build_prompt(context, user_query, response_style)
try:
async_response = await client.chat.stream_async(model=model, messages=[{"role": "user", "content": prompt}])
response = ""
async for chunk in async_response:
response += chunk.data.choices[0].delta.content
logging.info("Response generated successfully.")
except Exception as e:
logging.error(f"Error generating response: {e}")
response = "An error occurred while generating the response."
return response, [doc['text'] for doc in reranked_docs[:5]], reranked_docs[:5]
def retrieve_documents(
self,
user_query: str,
query_embedding: np.ndarray,
top_k: int,
selected_methods: List[str]
) -> List[dict]:
all_docs = []
for method in selected_methods:
indices, scores = getattr(self, f"retrieve_with_{method}")(user_query, query_embedding, top_k)
for idx, score in zip(indices, scores):
all_docs.append({
'text': self.texts[idx],
'method': method,
'score': score,
'index': idx
})
return all_docs
def retrieve_with_annoy(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
n_results = min(top_k, len(self.texts))
indices, distances = self.annoy_index.get_nns_by_vector(query_embedding, n_results, include_distances=True)
scores = [1.0 - (dist / max(distances)) for dist in distances] # Normalize distances to a [0, 1] score
logging.debug(f"Annoy retrieval returned {len(indices)} documents.")
return indices, scores
def retrieve_with_tfidf(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
query_vec = self.tfidf_vectorizer.transform([user_query])
similarities = cosine_similarity(query_vec, self.tfidf_matrix).flatten()
indices = np.argsort(-similarities)[:top_k]
logging.debug(f"TF-IDF retrieval returned {len(indices)} documents.")
return indices, similarities[indices].tolist()
def retrieve_with_bm25(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
tokenized_query = user_query.split()
scores = self.bm25.get_scores(tokenized_query)
indices = np.argsort(-scores)[:top_k]
logging.debug(f"BM25 retrieval returned {len(indices)} documents.")
return indices, scores[indices].tolist()
def retrieve_with_word2vec(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
query_tokens = user_query.split()
query_vec = np.mean([self.word2vec_model.wv[token] for token in query_tokens if token in self.word2vec_model.wv], axis=0)
expected_dim = query_vec.shape[0]
doc_vectors = []
for doc in self.texts:
word_vectors = [self.word2vec_model.wv[token] for token in doc.split() if token in self.word2vec_model.wv]
avg_vector = np.mean(word_vectors, axis=0) if word_vectors else np.zeros(expected_dim)
doc_vectors.append(avg_vector)
doc_vectors = np.array(doc_vectors)
similarities = cosine_similarity([query_vec], doc_vectors).flatten()
indices = np.argsort(-similarities)[:top_k]
return indices, similarities[indices].tolist()
def retrieve_with_euclidean(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
distances = euclidean_distances([query_embedding], self.embeddings).flatten()
indices = np.argsort(distances)[:top_k]
logging.debug(f"Euclidean retrieval returned {len(indices)} documents.")
return indices, distances[indices].tolist()
def retrieve_with_jaccard(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
query_set = set(user_query.lower().split())
scores = []
for doc in self.texts:
doc_set = set(doc.lower().split())
intersection = query_set.intersection(doc_set)
union = query_set.union(doc_set)
score = float(len(intersection)) / len(union) if union else 0
scores.append(score)
indices = np.argsort(-np.array(scores))[:top_k]
logging.debug(f"Jaccard retrieval returned {len(indices)} documents.")
return indices.tolist(), [scores[i] for i in indices]
def rerank_documents(
self,
user_query: str,
retrieved_docs: List[dict],
selected_methods: List[str]
) -> List[dict]:
reranked_docs = retrieved_docs
for method in selected_methods:
if method == 'advanced_fusion':
reranked_docs = self.advanced_fusion_retrieval(user_query, reranked_docs)
else:
reranked_docs = self.reranking_methods[method](user_query, reranked_docs)
return reranked_docs
def reciprocal_rank_fusion(self, user_query: str, docs: List[dict]) -> List[dict]:
k = 60 # fusion parameter
method_ranks = {}
fused_scores = {} # Initialize fused_scores here
for doc in docs:
method = doc['method']
if method not in method_ranks:
method_ranks[method] = {doc['index']: 1}
else:
method_ranks[method][doc['index']] = len(method_ranks[method]) + 1
for doc in docs:
idx = doc['index']
if idx not in fused_scores:
fused_scores[idx] = sum(1 / (k + rank) for method_rank in method_ranks.values() for i, rank in method_rank.items() if i == idx)
reranked_docs = sorted(docs, key=lambda x: fused_scores.get(x['index'], 0), reverse=True) # Use get() to handle missing keys
for doc in reranked_docs:
doc['rrf_score'] = fused_scores.get(doc['index'], 0) # Use get() to handle missing keys
return reranked_docs
def weighted_score_fusion(self, user_query: str, docs: List[dict]) -> List[dict]:
method_weights = {
'annoy': 0.3,
'tfidf': 0.2,
'bm25': 0.2,
'word2vec': 0.1,
'euclidean': 0.1,
'jaccard': 0.1
}
fused_scores = {}
for doc in docs:
idx = doc['index']
if idx not in fused_scores:
fused_scores[idx] = doc['score'] * method_weights[doc['method']]
else:
fused_scores[idx] += doc['score'] * method_weights[doc['method']]
reranked_docs = sorted(docs, key=lambda x: fused_scores[x['index']], reverse=True)
for doc in reranked_docs:
doc['wsf_score'] = fused_scores[doc['index']]
return reranked_docs
def semantic_similarity_reranking(self, user_query: str, docs: List[dict]) -> List[dict]:
query_embedding = np.mean([self.word2vec_model.wv[token] for token in user_query.split() if token in self.word2vec_model.wv], axis=0)
for doc in docs:
doc_embedding = np.mean([self.word2vec_model.wv[token] for token in doc['text'].split() if token in self.word2vec_model.wv], axis=0)
doc_embedding = doc_embedding if doc_embedding.shape == query_embedding.shape else np.zeros(query_embedding.shape)
doc['semantic_score'] = cosine_similarity([query_embedding], [doc_embedding])[0][0]
return sorted(docs, key=lambda x: x['semantic_score'], reverse=True)
def build_prompt(self, context: str, user_query: str, response_style: str) -> str:
styles = {
"detailed": "Provide a comprehensive and detailed answer based on the provided context.",
"concise": "Provide a brief and concise answer based on the provided context.",
"creative": "Provide a creative and engaging answer based on the provided context.",
"technical": "Provide a technical and in-depth answer based on the provided context."
}
style_instruction = styles.get(response_style.lower(), styles["detailed"])
if not context or not self.is_context_relevant(context, user_query):
prompt = f"""You are an intelligent assistant.
User Question:
{user_query}
Instruction:
The document database does not contain relevant information to answer the question. Please inform the user that no relevant documents were found and refrain from generating an imaginative or unrelated response."""
else:
prompt = f"""You are an intelligent assistant.
Context:
{context}
User Question:
{user_query}
Instruction:
{style_instruction}"""
logging.debug("Prompt constructed for response generation.")
return prompt
def is_context_relevant(self, context: str, user_query: str) -> bool:
context_lower = context.lower()
user_query_lower = user_query.lower()
query_terms = set(user_query_lower.split())
context_terms = set(context_lower.split())
common_terms = query_terms.intersection(context_terms)
return len(common_terms) > len(query_terms) * 0.2
# Cell 8: Store embeddings in vector DB and Annoy index
def create_vector_db_and_annoy_index(pdf_path, vector_db_path, annoy_index_path):
store_embeddings_in_vector_db(pdf_path, vector_db_path, annoy_index_path)
print("Vector database and Annoy index creation completed.")
# Cell 9: Run the store embeddings function (example)
# Replace 'example.pdf' with your PDF file path.
# It will create 'vector_db.pkl' and 'vector_index.ann'
# create_vector_db_and_annoy_index('med.pdf', 'vector_db.pkl', 'vector_index.ann')
# # Cell 10: Query the chatbot with user input
# async def query_chatbot():
# vector_db_path = "vector_db.pkl"
# annoy_index_path = "vector_index.ann"
# chatbot = MistralRAGChatbot(vector_db_path, annoy_index_path)
# user_query = input("Please enter your query: ")
# response_style = input("Please choose response style (Detailed, Concise, Creative, Technical): ").strip().lower()
# selected_retrieval_methods = input("Please choose retrieval methods (comma-separated: annoy, tfidf, bm25, euclidean, jaccard): ")
# selected_reranking_methods = input("Please choose reranking methods (comma-separated: advanced_fusion, reciprocal_rank_fusion, weighted_score_fusion, semantic_similarity): ")
# selected_retrieval_methods_list = [method.strip() for method in selected_retrieval_methods.split(',') if method.strip()]
# selected_reranking_methods_list = [method.strip() for method in selected_reranking_methods.split(',') if method.strip()]
# response, retrieved_docs, source_info = await chatbot.generate_response_with_rag(
# user_query=user_query,
# response_style=response_style,
# selected_retrieval_methods=selected_retrieval_methods_list,
# selected_reranking_methods=selected_reranking_methods_list
# )
# print("\nResponse:")
# print(response)
# print("\nRetrieved and Reranked Documents:")
# for idx, doc_info in enumerate(source_info, start=1):
# print(f"\nDocument {idx}:")
# print(f"Content Preview: {doc_info['text'][:200]}...")
# print(f"Original Retrieval Method: {doc_info['method']}")
# if 'score' in doc_info:
# print(f"Original Score: {doc_info['score']:.4f}")
# for key, value in doc_info.items():
# if key.endswith('_score') and key != 'score':
# print(f"{key.replace('_', ' ').title()}: {value:.4f}")
# import asyncio
# async def query_chatbot2():
# vector_db_path = "vector_db.pkl"
# annoy_index_path = "vector_index.ann"
# chatbot = MistralRAGChatbot(vector_db_path, annoy_index_path)
# user_query = "what is the name of the patient"
# response_style = "Concise"
# selected_retrieval_methods_list = ["tfidf", "bm25"]
# selected_reranking_methods_list = ["reciprocal_rank_fusion"]
# try:
# response, retrieved_docs, source_info = await chatbot.generate_response_with_rag(
# user_query=user_query,
# response_style=response_style,
# selected_retrieval_methods=selected_retrieval_methods_list,
# selected_reranking_methods=selected_reranking_methods_list
# )
# print("\n--- Response ---")
# print(response)
# print("\n--- Retrieved and Reranked Documents ---")
# for idx, doc_info in enumerate(source_info, start=1):
# print(f"\nDocument {idx}:")
# print(f"Content Preview: {doc_info['text'][:150]}...") # Show a preview of the document content
# print(f"Original Retrieval Method: {doc_info['method']}")
# if 'score' in doc_info:
# print(f"Original Score: {doc_info['score']:.4f}")
# # Display scores from specific reranking methods
# if 'rrf_score' in doc_info:
# print(f"Reciprocal Rank Fusion Score (RRF): {doc_info['rrf_score']:.4f}")
# if 'wsf_score' in doc_info:
# print(f"Weighted Score Fusion (WSF) Score: {doc_info['wsf_score']:.4f}")
# if 'semantic_score' in doc_info:
# print(f"Semantic Similarity Score: {doc_info['semantic_score']:.4f}")
# if 'pagerank_score' in doc_info:
# print(f"PageRank Score: {doc_info['pagerank_score']:.4f}")
# if 'advanced_fusion_score' in doc_info:
# print(f"Advanced Fusion Score: {doc_info['advanced_fusion_score']:.4f}")
# except Exception as e:
# logging.error(f"Error generating response: {e}")
# print("\nResponse:")
# print("An error occurred while generating the response.")
# # Call the function in a Jupyter notebook environment
# await query_chatbot()
import gradio as gr
def chatbot_interface(user_query, response_style, selected_retrieval_methods, selected_reranking_methods, file, chunk_size, overlap):
vector_db_path = "vector_db.pkl"
annoy_index_path = "vector_index.ann"
#Load the documents and create embeddings with the provided chunk_size and overlap
store_embeddings_in_vector_db(file.name, 'vector_db.pkl', 'vector_index.ann', chunk_size, overlap)
chatbot = MistralRAGChatbot(vector_db_path, annoy_index_path)
selected_retrieval_methods_list = [method.strip() for method in selected_retrieval_methods if method.strip()]
selected_reranking_methods_list = [method.strip() for method in selected_reranking_methods.split(',') if method.strip()]
response, retrieved_docs, source_info = asyncio.run(chatbot.generate_response_with_rag(
user_query=user_query,
response_style=response_style,
selected_retrieval_methods=selected_retrieval_methods_list,
selected_reranking_methods=selected_reranking_methods_list
))
formatted_response = f"**Response:**\n{response}\n\n"
formatted_response += "**Retrieved and Reranked Documents:**\n"
for idx, doc_info in enumerate(source_info, start=1):
formatted_response += f"\n**Document {idx}:**\n"
formatted_response += f"Content Preview: {doc_info['text'][:200]}...\n"
formatted_response += f"Original Retrieval Method: {doc_info['method']}\n"
if 'score' in doc_info:
formatted_response += f"Original Score: {doc_info['score']:.4f}\n"
for key, value in doc_info.items():
if key.endswith('_score') and key != 'score':
formatted_response += f"{key.replace('_', ' ').title()}: {value:.4f}\n"
return formatted_response
iface = gr.Interface(
fn=chatbot_interface,
theme='IndusCloud9/RabbittLlama',
inputs=[
gr.Textbox(lines=5, label="User Query"),
gr.Dropdown(["Detailed", "Concise", "Creative", "Technical"], label="Response Style"),
gr.Dropdown(["annoy", "tfidf", "bm25", "euclidean", "jaccard"], label="Retrieval Methods", multiselect=True), # This line is changed
gr.Dropdown(["advanced_fusion", "reciprocal_rank_fusion", "weighted_score_fusion", "semantic_similarity"], label="Reranking Methods"),
gr.File(label="Upload a PDF"),
gr.Slider(minimum=1024, maximum=2048, step=128, value=2048, label="Chunk Size"),
gr.Slider(minimum=100, maximum=300, step=100, value=200, label="Overlap")
],
outputs=gr.Textbox(label="Chatbot Response"),
title="Chat with Document"
)
iface.launch(share=True) |