File size: 26,375 Bytes
6b10c76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed8b7cc
91858b4
6b10c76
 
995a40e
6b10c76
91858b4
6b10c76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91858b4
6b10c76
 
 
 
 
 
 
 
91858b4
6b10c76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0123f2
6b10c76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0123f2
6b10c76
 
a0631cd
 
 
02fc9e7
9e30ce1
 
e0123f2
6b10c76
 
 
7d4aeb9
f971c71
6b10c76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e446f0
a317caa
6b10c76
 
 
 
e0123f2
6b10c76
 
91858b4
6b10c76
 
91858b4
 
48c261a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
# Cell 2: Import necessary libraries
import time
import fitz  # PyMuPDF
import numpy as np
import pickle
import os
import dill
import logging
import asyncio
import networkx as nx  # Import networkx here
from mistralai import Mistral
from annoy import AnnoyIndex
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity, euclidean_distances
from sklearn.preprocessing import normalize
from rank_bm25 import BM25Okapi
from gensim.models import Word2Vec
from typing import List, Optional, Tuple
import tempfile

# Cell 3: Set up logging and Mistral client
logger = logging.getLogger(__name__)
api_key = "VHTGVu2YH2WxcTbfpkK00wAidHU12Stn"
client = Mistral(api_key=api_key)

# Cell 4: Function to get embeddings with rate limiting
def get_text_embedding_with_rate_limit(text_list, initial_delay=2, max_retries=10):
    embeddings = []
    for text in text_list:
        retries = 0
        delay = initial_delay
        while retries < max_retries:
            try:
                token_count = len(text.split())
                if token_count > 16384:
                    print("Warning: Text chunk exceeds the token limit. Truncating the text.")
                    text = " ".join(text.split()[:16384])
                response = client.embeddings.create(model="mistral-embed", inputs=[text])
                embeddings.extend([embedding.embedding for embedding in response.data])
                time.sleep(delay)
                break
            except Exception as e:
                retries += 1
                print(f"Rate limit exceeded, retrying in {delay} seconds... (Attempt {retries}/{max_retries})")
                time.sleep(delay)
                delay *= 2
                if retries == max_retries:
                    print("Max retries reached. Skipping this chunk.")
                    break
    return embeddings

# Cell 5: Function to store embeddings in a vector database
def store_embeddings_in_vector_db(
    pdf_path: str,
    vector_db_path: str,
    annoy_index_path: str,
    chunk_size: int = 2048,
    overlap: int = 200,
    num_trees: int = 10
):
    doc = fitz.open(pdf_path)
    all_embeddings = []
    all_texts = []
    total_pages = doc.page_count
    logging.info(f"Processing PDF: {pdf_path} with {total_pages} pages.")

    for page_num in range(total_pages):
        page = doc.load_page(page_num)
        text = page.get_text()
        if text.strip():
            chunks = split_text_into_chunks(text, chunk_size, overlap)
            embeddings = get_text_embedding_with_rate_limit(chunks)
            all_embeddings.extend(embeddings)
            all_texts.extend(chunks)
            logging.info(f"Processed page {page_num + 1}/{total_pages}, extracted {len(chunks)} chunks.")
        else:
            logging.warning(f"No text found on page {page_num + 1}.")

    embeddings_np = np.array(all_embeddings).astype('float32')
    with open(vector_db_path, "wb") as f:
        dill.dump({'embeddings': embeddings_np, 'texts': all_texts}, f)
    logging.info(f"Stored embeddings and texts to {vector_db_path}.")

    if os.path.exists(annoy_index_path):
        os.remove(annoy_index_path)
        logging.info(f"Existing Annoy index at {annoy_index_path} removed.")

    embedding_dim = embeddings_np.shape[1]
    annoy_index = AnnoyIndex(embedding_dim, 'angular')
    for i, embedding in enumerate(embeddings_np):
        annoy_index.add_item(i, embedding)
    annoy_index.build(num_trees)
    annoy_index.save(annoy_index_path)
    logging.info(f"Annoy index built with {len(all_embeddings)} items and saved to {annoy_index_path}.")

# Cell 6: Helper functions for text processing
def split_text_into_chunks(text: str, chunk_size: int = 2048, overlap: int = 200) -> List[str]:
    tokens = text.split()
    chunks = []
    start = 0
    while start < len(tokens):
        end = start + chunk_size
        chunk = " ".join(tokens[start:end])
        chunks.append(chunk)
        start += chunk_size - overlap
    return chunks

class MistralRAGChatbot:
    def __init__(self, vector_db_path: str, annoy_index_path: str):
        self.embeddings, self.texts = self.load_vector_db(vector_db_path)
        self.annoy_index = self.load_annoy_index(annoy_index_path, self.embeddings.shape[1])
        self.tfidf_matrix, self.tfidf_vectorizer = self.calculate_tfidf(self.texts)
        self.bm25 = BM25Okapi([text.split() for text in self.texts])
        self.word2vec_model = self.train_word2vec(self.texts)
        self.reranking_methods = {
            'reciprocal_rank_fusion': self.reciprocal_rank_fusion,
            'weighted_score_fusion': self.weighted_score_fusion,
            'semantic_similarity': self.semantic_similarity_reranking,
            'advanced_fusion': self.advanced_fusion_retrieval
            }
        logging.info("MistralRAGChatbot initialized successfully.")


    def load_vector_db(self, vector_db_path: str) -> Tuple[np.ndarray, List[str]]:
        with open(vector_db_path, "rb") as f:
            data = dill.load(f)
        embeddings = np.array(data['embeddings'], dtype='float32')
        texts = data['texts']
        logging.info(f"Loaded vector database from {vector_db_path} with {len(texts)} entries.")
        return embeddings, texts

    def load_annoy_index(self, annoy_index_path: str, embedding_dim: int) -> AnnoyIndex:
        annoy_index = AnnoyIndex(embedding_dim, 'angular')
        annoy_index.load(annoy_index_path)
        logging.info(f"Loaded Annoy index from {annoy_index_path}.")
        return annoy_index

    def calculate_tfidf(self, texts: List[str]) -> Tuple[np.ndarray, TfidfVectorizer]:
        vectorizer = TfidfVectorizer(stop_words='english')
        tfidf_matrix = vectorizer.fit_transform(texts)
        logging.info("TF-IDF matrix calculated.")
        return tfidf_matrix, vectorizer

    def train_word2vec(self, texts: List[str]) -> Word2Vec:
        tokenized_texts = [text.split() for text in texts]
        model = Word2Vec(sentences=tokenized_texts, vector_size=100, window=5, min_count=1, workers=4)
        logging.info("Word2Vec model trained.")
        return model

    async def get_text_embedding(self, text: str, model: str = "mistral-embed") -> np.ndarray:
        try:
            response = await client.embeddings.create_async(model=model, inputs=[text])
            return np.array(response.data[0].embedding)
        except Exception as e:
            logging.error(f"Error fetching embedding: {e}")
            return np.zeros((1024,))  # Assuming embedding size of 384

    def advanced_fusion_retrieval(self, user_query: str, docs: List[dict]) -> List[dict]:
        query_embedding = self.create_embeddings([user_query])[0]

        vector_scores = {doc['index']: doc['score'] for doc in docs if doc['method'] == 'annoy'}
        bm25_scores = {doc['index']: doc['score'] for doc in docs if doc['method'] == 'bm25'}

        sim_graph = nx.Graph()
        sim_matrix = cosine_similarity(self.embeddings)
        for i in range(len(self.embeddings)):
            for j in range(i + 1, len(self.embeddings)):
                if sim_matrix[i, j] > 0.5:
                    sim_graph.add_edge(i, j, weight=sim_matrix[i, j])

        pagerank_scores = np.array(list(nx.pagerank(sim_graph, weight='weight').values()))

        combined_scores = {}
        for doc in docs:
            idx = doc['index']
            combined_scores[idx] = (
                0.5 * vector_scores.get(idx, 0) +
                0.3 * bm25_scores.get(idx, 0) +
                0.2 * pagerank_scores[idx]
            )

        sorted_indices = sorted(combined_scores, key=combined_scores.get, reverse=True)

        return [{'text': self.texts[i], 'method': 'advanced_fusion', 'score': combined_scores[i], 'index': i} for i in sorted_indices[:5]]

    def create_embeddings(self, text_list: List[str]) -> np.ndarray:
        expected_dim = 1024  # The dimension expected by the Annoy index
        embeddings = []
        for text in text_list:
            word_vectors = [self.word2vec_model.wv[token] for token in text.split() if token in self.word2vec_model.wv]
            avg_embedding = np.mean(word_vectors, axis=0, dtype=np.float32) if word_vectors else np.zeros(self.word2vec_model.vector_size, dtype=np.float32)
            if avg_embedding.shape[0] < expected_dim:
                avg_embedding = np.pad(avg_embedding, (0, expected_dim - avg_embedding.shape[0]), 'constant')
            elif avg_embedding.shape[0] > expected_dim:
                avg_embedding = avg_embedding[:expected_dim]
            embeddings.append(avg_embedding)
        return np.array(embeddings, dtype=np.float32)


    async def generate_response_with_rag(
        self,
        user_query: str,
        model: str = "mistral-small-latest",
        top_k: int = 10,
        response_style: str = "Detailed",
        selected_retrieval_methods: Optional[List[str]] = None,
        selected_reranking_methods: Optional[List[str]] = None
    ) -> Tuple[str, List[str], List[dict]]:
        if not selected_retrieval_methods:
            selected_retrieval_methods = ['annoy', 'tfidf', 'bm25', 'word2vec', 'euclidean', 'jaccard']
        if not selected_reranking_methods:
            selected_reranking_methods = ['reciprocal_rank_fusion', 'weighted_score_fusion', 'advanced_fusion']
        query_embedding = await self.get_text_embedding(user_query)
        retrieved_docs = self.retrieve_documents(user_query, query_embedding, top_k, selected_retrieval_methods)
        reranked_docs = self.rerank_documents(user_query, retrieved_docs, selected_reranking_methods)
        context = "\n\n".join([doc['text'] for doc in reranked_docs[:5]])
        prompt = self.build_prompt(context, user_query, response_style)
        try:
            async_response = await client.chat.stream_async(model=model, messages=[{"role": "user", "content": prompt}])
            response = ""
            async for chunk in async_response:
                response += chunk.data.choices[0].delta.content
            logging.info("Response generated successfully.")
        except Exception as e:
            logging.error(f"Error generating response: {e}")
            response = "An error occurred while generating the response."
        return response, [doc['text'] for doc in reranked_docs[:5]], reranked_docs[:5]


    def retrieve_documents(
        self,
        user_query: str,
        query_embedding: np.ndarray,
        top_k: int,
        selected_methods: List[str]
    ) -> List[dict]:
        all_docs = []
        for method in selected_methods:
            indices, scores = getattr(self, f"retrieve_with_{method}")(user_query, query_embedding, top_k)
            for idx, score in zip(indices, scores):
                all_docs.append({
                    'text': self.texts[idx],
                    'method': method,
                    'score': score,
                    'index': idx
                })
        return all_docs

    def retrieve_with_annoy(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
        n_results = min(top_k, len(self.texts))
        indices, distances = self.annoy_index.get_nns_by_vector(query_embedding, n_results, include_distances=True)
        scores = [1.0 - (dist / max(distances)) for dist in distances]  # Normalize distances to a [0, 1] score
        logging.debug(f"Annoy retrieval returned {len(indices)} documents.")
        return indices, scores

    def retrieve_with_tfidf(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
        query_vec = self.tfidf_vectorizer.transform([user_query])
        similarities = cosine_similarity(query_vec, self.tfidf_matrix).flatten()
        indices = np.argsort(-similarities)[:top_k]
        logging.debug(f"TF-IDF retrieval returned {len(indices)} documents.")
        return indices, similarities[indices].tolist()

    def retrieve_with_bm25(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
        tokenized_query = user_query.split()
        scores = self.bm25.get_scores(tokenized_query)
        indices = np.argsort(-scores)[:top_k]
        logging.debug(f"BM25 retrieval returned {len(indices)} documents.")
        return indices, scores[indices].tolist()

    def retrieve_with_word2vec(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
        query_tokens = user_query.split()
        query_vec = np.mean([self.word2vec_model.wv[token] for token in query_tokens if token in self.word2vec_model.wv], axis=0)
        expected_dim = query_vec.shape[0]
        doc_vectors = []
        for doc in self.texts:
            word_vectors = [self.word2vec_model.wv[token] for token in doc.split() if token in self.word2vec_model.wv]
            avg_vector = np.mean(word_vectors, axis=0) if word_vectors else np.zeros(expected_dim)
            doc_vectors.append(avg_vector)
        doc_vectors = np.array(doc_vectors)
        similarities = cosine_similarity([query_vec], doc_vectors).flatten()
        indices = np.argsort(-similarities)[:top_k]
        return indices, similarities[indices].tolist()

    def retrieve_with_euclidean(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
        distances = euclidean_distances([query_embedding], self.embeddings).flatten()
        indices = np.argsort(distances)[:top_k]
        logging.debug(f"Euclidean retrieval returned {len(indices)} documents.")
        return indices, distances[indices].tolist()

    def retrieve_with_jaccard(self, user_query: str, query_embedding: np.ndarray, top_k: int) -> Tuple[List[int], List[float]]:
        query_set = set(user_query.lower().split())
        scores = []
        for doc in self.texts:
            doc_set = set(doc.lower().split())
            intersection = query_set.intersection(doc_set)
            union = query_set.union(doc_set)
            score = float(len(intersection)) / len(union) if union else 0
            scores.append(score)
        indices = np.argsort(-np.array(scores))[:top_k]
        logging.debug(f"Jaccard retrieval returned {len(indices)} documents.")
        return indices.tolist(), [scores[i] for i in indices]

    def rerank_documents(
        self,
        user_query: str,
        retrieved_docs: List[dict],
        selected_methods: List[str]
    ) -> List[dict]:
        reranked_docs = retrieved_docs
        for method in selected_methods:
            if method == 'advanced_fusion':
                reranked_docs = self.advanced_fusion_retrieval(user_query, reranked_docs)
            else:
                reranked_docs = self.reranking_methods[method](user_query, reranked_docs)

        return reranked_docs

    def reciprocal_rank_fusion(self, user_query: str, docs: List[dict]) -> List[dict]:
        k = 60  # fusion parameter
        method_ranks = {}
        fused_scores = {}  # Initialize fused_scores here
        for doc in docs:
            method = doc['method']
            if method not in method_ranks:
                method_ranks[method] = {doc['index']: 1}
            else:
                method_ranks[method][doc['index']] = len(method_ranks[method]) + 1
        for doc in docs:
            idx = doc['index']
            if idx not in fused_scores:
                fused_scores[idx] = sum(1 / (k + rank) for method_rank in method_ranks.values() for i, rank in method_rank.items() if i == idx)
        reranked_docs = sorted(docs, key=lambda x: fused_scores.get(x['index'], 0), reverse=True)  # Use get() to handle missing keys
        for doc in reranked_docs:
            doc['rrf_score'] = fused_scores.get(doc['index'], 0)  # Use get() to handle missing keys
        return reranked_docs

    def weighted_score_fusion(self, user_query: str, docs: List[dict]) -> List[dict]:
        method_weights = {
            'annoy': 0.3,
            'tfidf': 0.2,
            'bm25': 0.2,
            'word2vec': 0.1,
            'euclidean': 0.1,
            'jaccard': 0.1
        }
        fused_scores = {}
        for doc in docs:
            idx = doc['index']
            if idx not in fused_scores:
                fused_scores[idx] = doc['score'] * method_weights[doc['method']]
            else:
                fused_scores[idx] += doc['score'] * method_weights[doc['method']]

        reranked_docs = sorted(docs, key=lambda x: fused_scores[x['index']], reverse=True)
        for doc in reranked_docs:
            doc['wsf_score'] = fused_scores[doc['index']]
        return reranked_docs

    def semantic_similarity_reranking(self, user_query: str, docs: List[dict]) -> List[dict]:
        query_embedding = np.mean([self.word2vec_model.wv[token] for token in user_query.split() if token in self.word2vec_model.wv], axis=0)
        for doc in docs:
            doc_embedding = np.mean([self.word2vec_model.wv[token] for token in doc['text'].split() if token in self.word2vec_model.wv], axis=0)
            doc_embedding = doc_embedding if doc_embedding.shape == query_embedding.shape else np.zeros(query_embedding.shape)
            doc['semantic_score'] = cosine_similarity([query_embedding], [doc_embedding])[0][0]
        return sorted(docs, key=lambda x: x['semantic_score'], reverse=True)

    def build_prompt(self, context: str, user_query: str, response_style: str) -> str:
        styles = {
            "detailed": "Provide a comprehensive and detailed answer based on the provided context.",
            "concise": "Provide a brief and concise answer based on the provided context.",
            "creative": "Provide a creative and engaging answer based on the provided context.",
            "technical": "Provide a technical and in-depth answer based on the provided context."
        }

        style_instruction = styles.get(response_style.lower(), styles["detailed"])

        if not context or not self.is_context_relevant(context, user_query):
            prompt = f"""You are an intelligent assistant.
    User Question:
    {user_query}
    Instruction:
    The document database does not contain relevant information to answer the question. Please inform the user that no relevant documents were found and refrain from generating an imaginative or unrelated response."""
        else:
            prompt = f"""You are an intelligent assistant.
    Context:
    {context}
    User Question:
    {user_query}
    Instruction:
    {style_instruction}"""

        logging.debug("Prompt constructed for response generation.")
        return prompt

    def is_context_relevant(self, context: str, user_query: str) -> bool:
        context_lower = context.lower()
        user_query_lower = user_query.lower()
        query_terms = set(user_query_lower.split())
        context_terms = set(context_lower.split())
        common_terms = query_terms.intersection(context_terms)
        return len(common_terms) > len(query_terms) * 0.2

# Cell 8: Store embeddings in vector DB and Annoy index
def create_vector_db_and_annoy_index(pdf_path, vector_db_path, annoy_index_path):
    store_embeddings_in_vector_db(pdf_path, vector_db_path, annoy_index_path)
    print("Vector database and Annoy index creation completed.")

# Cell 9: Run the store embeddings function (example)
# Replace 'example.pdf' with your PDF file path.
# It will create 'vector_db.pkl' and 'vector_index.ann'
# create_vector_db_and_annoy_index('med.pdf', 'vector_db.pkl', 'vector_index.ann')

# # Cell 10: Query the chatbot with user input
# async def query_chatbot():
#     vector_db_path = "vector_db.pkl"
#     annoy_index_path = "vector_index.ann"
#     chatbot = MistralRAGChatbot(vector_db_path, annoy_index_path)

#     user_query = input("Please enter your query: ")
#     response_style = input("Please choose response style (Detailed, Concise, Creative, Technical): ").strip().lower()
#     selected_retrieval_methods = input("Please choose retrieval methods (comma-separated: annoy, tfidf, bm25, euclidean, jaccard): ")
#     selected_reranking_methods = input("Please choose reranking methods (comma-separated: advanced_fusion, reciprocal_rank_fusion, weighted_score_fusion, semantic_similarity): ")

#     selected_retrieval_methods_list = [method.strip() for method in selected_retrieval_methods.split(',') if method.strip()]
#     selected_reranking_methods_list = [method.strip() for method in selected_reranking_methods.split(',') if method.strip()]

#     response, retrieved_docs, source_info = await chatbot.generate_response_with_rag(
#         user_query=user_query,
#         response_style=response_style,
#         selected_retrieval_methods=selected_retrieval_methods_list,
#         selected_reranking_methods=selected_reranking_methods_list
#     )

#     print("\nResponse:")
#     print(response)
#     print("\nRetrieved and Reranked Documents:")
#     for idx, doc_info in enumerate(source_info, start=1):
#         print(f"\nDocument {idx}:")
#         print(f"Content Preview: {doc_info['text'][:200]}...")
#         print(f"Original Retrieval Method: {doc_info['method']}")
#         if 'score' in doc_info:
#             print(f"Original Score: {doc_info['score']:.4f}")
#         for key, value in doc_info.items():
#             if key.endswith('_score') and key != 'score':
#                 print(f"{key.replace('_', ' ').title()}: {value:.4f}")

# import asyncio

# async def query_chatbot2():
#     vector_db_path = "vector_db.pkl"
#     annoy_index_path = "vector_index.ann"
#     chatbot = MistralRAGChatbot(vector_db_path, annoy_index_path)

#     user_query = "what is the name of the patient"
#     response_style = "Concise"
#     selected_retrieval_methods_list = ["tfidf", "bm25"]
#     selected_reranking_methods_list = ["reciprocal_rank_fusion"]

#     try:
#         response, retrieved_docs, source_info = await chatbot.generate_response_with_rag(
#             user_query=user_query,
#             response_style=response_style,
#             selected_retrieval_methods=selected_retrieval_methods_list,
#             selected_reranking_methods=selected_reranking_methods_list
#         )

#         print("\n--- Response ---")
#         print(response)

#         print("\n--- Retrieved and Reranked Documents ---")
#         for idx, doc_info in enumerate(source_info, start=1):
#             print(f"\nDocument {idx}:")
#             print(f"Content Preview: {doc_info['text'][:150]}...")  # Show a preview of the document content
#             print(f"Original Retrieval Method: {doc_info['method']}")
#             if 'score' in doc_info:
#                 print(f"Original Score: {doc_info['score']:.4f}")

#             # Display scores from specific reranking methods
#             if 'rrf_score' in doc_info:
#                 print(f"Reciprocal Rank Fusion Score (RRF): {doc_info['rrf_score']:.4f}")
#             if 'wsf_score' in doc_info:
#                 print(f"Weighted Score Fusion (WSF) Score: {doc_info['wsf_score']:.4f}")
#             if 'semantic_score' in doc_info:
#                 print(f"Semantic Similarity Score: {doc_info['semantic_score']:.4f}")
#             if 'pagerank_score' in doc_info:
#                 print(f"PageRank Score: {doc_info['pagerank_score']:.4f}")
#             if 'advanced_fusion_score' in doc_info:
#                 print(f"Advanced Fusion Score: {doc_info['advanced_fusion_score']:.4f}")

#     except Exception as e:
#         logging.error(f"Error generating response: {e}")
#         print("\nResponse:")
#         print("An error occurred while generating the response.")

# # Call the function in a Jupyter notebook environment
# await query_chatbot()

import gradio as gr

def chatbot_interface(user_query, response_style, selected_retrieval_methods, selected_reranking_methods, file, chunk_size, overlap):
    vector_db_path = "vector_db.pkl"
    annoy_index_path = "vector_index.ann"

    
    
    

    #Load the documents and create embeddings with the provided chunk_size and overlap
    store_embeddings_in_vector_db(file.name, 'vector_db.pkl', 'vector_index.ann', chunk_size, overlap)

    chatbot = MistralRAGChatbot(vector_db_path, annoy_index_path)

    selected_retrieval_methods_list = [method.strip() for method in selected_retrieval_methods if method.strip()]
    selected_reranking_methods_list = [method.strip() for method in selected_reranking_methods.split(',') if method.strip()]

    response, retrieved_docs, source_info = asyncio.run(chatbot.generate_response_with_rag(
        user_query=user_query,
        response_style=response_style,
        selected_retrieval_methods=selected_retrieval_methods_list,
        selected_reranking_methods=selected_reranking_methods_list
    ))

    formatted_response = f"**Response:**\n{response}\n\n"
    formatted_response += "**Retrieved and Reranked Documents:**\n"
    for idx, doc_info in enumerate(source_info, start=1):
        formatted_response += f"\n**Document {idx}:**\n"
        formatted_response += f"Content Preview: {doc_info['text'][:200]}...\n"
        formatted_response += f"Original Retrieval Method: {doc_info['method']}\n"
        if 'score' in doc_info:
            formatted_response += f"Original Score: {doc_info['score']:.4f}\n"
        for key, value in doc_info.items():
            if key.endswith('_score') and key != 'score':
                formatted_response += f"{key.replace('_', ' ').title()}: {value:.4f}\n"

    return formatted_response
iface = gr.Interface(
    fn=chatbot_interface,
    theme='IndusCloud9/RabbittLlama',
    inputs=[ 
        gr.Textbox(lines=5, label="User Query"),
        gr.Dropdown(["Detailed", "Concise", "Creative", "Technical"], label="Response Style"),
        gr.Dropdown(["annoy", "tfidf", "bm25", "euclidean", "jaccard"], label="Retrieval Methods", multiselect=True), # This line is changed
        gr.Dropdown(["advanced_fusion", "reciprocal_rank_fusion", "weighted_score_fusion", "semantic_similarity"], label="Reranking Methods"),
        gr.File(label="Upload a PDF"),
        gr.Slider(minimum=1024, maximum=2048, step=128, value=2048, label="Chunk Size"),
        gr.Slider(minimum=100, maximum=300, step=100, value=200, label="Overlap")
    ],
    outputs=gr.Textbox(label="Chatbot Response"),
    title="Chat with Document"
)

iface.launch(share=True)