wyysf's picture
Upload 107 files
d758270 verified
|
raw
history blame
3.27 kB

Convolutional Reconstruction Model

Official implementation for CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model.

CRM is a feed-forward model which can generate 3D textured mesh in 10 seconds.

Project Page | Arxiv | HF-Demo | Weights

https://github.com/thu-ml/CRM/assets/40787266/8b325bc0-aa74-4c26-92e8-a8f0c1079382

Try CRM 🍻

Install

Step 1 - Base

Install package one by one, we use python 3.9

pip install torch==1.13.0+cu117 torchvision==0.14.0+cu117 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu117
pip install torch-scatter==2.1.1 -f https://data.pyg.org/whl/torch-1.13.1+cu117.html
pip install kaolin==0.14.0 -f https://nvidia-kaolin.s3.us-east-2.amazonaws.com/torch-1.13.1_cu117.html
pip install -r requirements.txt

besides, one by one need to install xformers manually according to the official doc (conda no need), e.g.

pip install ninja
pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers

Step 2 - Nvdiffrast

Install nvdiffrast according to the official doc, e.g.

pip install git+https://github.com/NVlabs/nvdiffrast

Inference

We suggest gradio for a visualized inference.

gradio app.py

image

For inference in command lines, simply run

CUDA_VISIBLE_DEVICES="0" python run.py --inputdir "examples/kunkun.webp"

It will output the preprocessed image, generated 6-view images and CCMs and a 3D model in obj format.

Tips: (1) If the result is unsatisfatory, please check whether the input image is correctly pre-processed into a grey background. Otherwise the results will be unpredictable. (2) Different from the Huggingface Demo, this official implementation uses UV texture instead of vertex color. It has better texture than the online demo but longer generating time owing to the UV texturing.

Todo List

  • Release inference code.
  • Release pretrained models.
  • Optimize inference code to fit in low memery GPU.
  • Upload training code.

Acknowledgement

Citation

@article{wang2024crm,
  title={CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model},
  author={Zhengyi Wang and Yikai Wang and Yifei Chen and Chendong Xiang and Shuo Chen and Dajiang Yu and Chongxuan Li and Hang Su and Jun Zhu},
  journal={arXiv preprint arXiv:2403.05034},
  year={2024}
}