Spaces:
Sleeping
Sleeping
File size: 11,277 Bytes
9fcef4d 75dc06d 9fcef4d 75dc06d 9fcef4d 75dc06d 9fcef4d 75dc06d 9fcef4d 75dc06d 9fcef4d 75dc06d 9fcef4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import os
import random
import torch
import hydra
import numpy as np
import zipfile
import time
import uuid
from typing import Any
from hydra import compose, initialize
from omegaconf import DictConfig, OmegaConf
from huggingface_hub import hf_hub_download
from utils.misc import compute_model_dim
from datasets.base import create_dataset
from datasets.misc import collate_fn_general, collate_fn_squeeze_pcd_batch
from models.base import create_model
from models.visualizer import create_visualizer
from models.environment import create_enviroment
def pretrain_pointtrans_weight_path():
return hf_hub_download('SceneDiffuser/SceneDiffuser', 'weights/POINTTRANS_C_32768/model.pth')
def model_weight_path(task, has_observation=False):
if task == 'pose_gen':
return hf_hub_download('SceneDiffuser/SceneDiffuser', 'weights/2022-11-09_11-22-52_PoseGen_ddm4_lr1e-4_ep100/ckpts/model.pth')
elif task == 'motion_gen' and has_observation == True:
return hf_hub_download('SceneDiffuser/SceneDiffuser', 'weights/2022-11-09_14-28-12_MotionGen_ddm_T200_lr1e-4_ep300_obser/ckpts/model.pth')
elif task == 'motion_gen' and has_observation == False:
return hf_hub_download('SceneDiffuser/SceneDiffuser', 'weights/2022-11-09_12-54-50_MotionGen_ddm_T200_lr1e-4_ep300/ckpts/model.pth')
elif task == 'path_planning':
return hf_hub_download('SceneDiffuser/SceneDiffuser', 'weights/2022-11-25_20-57-28_Path_ddm4_LR1e-4_E100_REL/ckpts/model.pth')
else:
raise Exception('Unexcepted task.')
def pose_motion_data_path():
zip_path = hf_hub_download('SceneDiffuser/SceneDiffuser', 'hf_data/pose_motion.zip')
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(os.path.dirname(zip_path))
rpath = os.path.join(os.path.dirname(zip_path), 'pose_motion')
return (
os.path.join(rpath, 'PROXD_temp'),
os.path.join(rpath, 'models_smplx_v1_1/models/'),
os.path.join(rpath, 'PROX'),
os.path.join(rpath, 'PROX/V02_05')
)
def path_planning_data_path():
zip_path = hf_hub_download('SceneDiffuser/SceneDiffuser', 'hf_data/path_planning.zip')
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(os.path.dirname(zip_path))
return os.path.join(os.path.dirname(zip_path), 'path_planning')
def load_ckpt(model: torch.nn.Module, path: str) -> None:
""" load ckpt for current model
Args:
model: current model
path: save path
"""
assert os.path.exists(path), 'Can\'t find provided ckpt.'
saved_state_dict = torch.load(path)['model']
model_state_dict = model.state_dict()
for key in model_state_dict:
if key in saved_state_dict:
model_state_dict[key] = saved_state_dict[key]
## model is trained with ddm
if 'module.'+key in saved_state_dict:
model_state_dict[key] = saved_state_dict['module.'+key]
model.load_state_dict(model_state_dict)
def _sampling(cfg: DictConfig, scene: str) -> Any:
## compute modeling dimension according to task
cfg.model.d_x = compute_model_dim(cfg.task)
if cfg.gpu is not None:
device = f'cuda:{cfg.gpu}'
else:
device = 'cpu'
dataset = create_dataset(cfg.task.dataset, 'test', cfg.slurm, case_only=True, specific_scene=scene)
if cfg.model.scene_model.name == 'PointTransformer':
collate_fn = collate_fn_squeeze_pcd_batch
else:
collate_fn = collate_fn_general
dataloader = dataset.get_dataloader(
batch_size=1,
collate_fn=collate_fn,
shuffle=True,
)
## create model and load ckpt
model = create_model(cfg, slurm=cfg.slurm, device=device)
model.to(device=device)
load_ckpt(model, path=model_weight_path(cfg.task.name, cfg.task.has_observation if 'has_observation' in cfg.task else False))
## create visualizer and visualize
visualizer = create_visualizer(cfg.task.visualizer)
results = visualizer.visualize(model, dataloader)
return results
def _planning(cfg: DictConfig, scene: str) -> Any:
## compute modeling dimension according to task
cfg.model.d_x = compute_model_dim(cfg.task)
if cfg.gpu is not None:
device = f'cuda:{cfg.gpu}'
else:
device = 'cpu'
dataset = create_dataset(cfg.task.dataset, 'test', cfg.slurm, case_only=True, specific_scene=scene)
if cfg.model.scene_model.name == 'PointTransformer':
collate_fn = collate_fn_squeeze_pcd_batch
else:
collate_fn = collate_fn_general
dataloader = dataset.get_dataloader(
batch_size=1,
collate_fn=collate_fn,
shuffle=True,
)
## create model and load ckpt
model = create_model(cfg, slurm=cfg.slurm, device=device)
model.to(device=device)
load_ckpt(model, path=model_weight_path(cfg.task.name, cfg.task.has_observation if 'has_observation' in cfg.task else False))
## create environment for planning task and run
env = create_enviroment(cfg.task.env)
results = env.run(model, dataloader)
return results
## interface for five task
## real-time model:
## - pose generation
## - motion generation
## - path planning
def pose_generation(scene, count, seed, opt, scale) -> Any:
scene_model_weight_path = pretrain_pointtrans_weight_path()
data_dir, smpl_dir, prox_dir, vposer_dir = pose_motion_data_path()
override_config = [
"diffuser=ddpm",
"model=unet",
f"model.scene_model.pretrained_weights={scene_model_weight_path}",
"task=pose_gen",
"task.visualizer.name=PoseGenVisualizerHF",
f"task.visualizer.ksample={count}",
f"task.dataset.data_dir={data_dir}",
f"task.dataset.smpl_dir={smpl_dir}",
f"task.dataset.prox_dir={prox_dir}",
f"task.dataset.vposer_dir={vposer_dir}",
]
if opt == True:
override_config += [
"optimizer=pose_in_scene",
"optimizer.scale_type=div_var",
f"optimizer.scale={scale}",
"optimizer.vposer=false",
"optimizer.contact_weight=0.02",
"optimizer.collision_weight=1.0"
]
initialize(config_path="./scenediffuser/configs", version_base=None)
config = compose(config_name="default", overrides=override_config)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
res = _sampling(config, scene)
hydra.core.global_hydra.GlobalHydra.instance().clear()
return res
def motion_generation(scene, count, seed, withstart, opt, scale) -> Any:
scene_model_weight_path = pretrain_pointtrans_weight_path()
data_dir, smpl_dir, prox_dir, vposer_dir = pose_motion_data_path()
override_config = [
"diffuser=ddpm",
"diffuser.steps=200",
"model=unet",
"model.use_position_embedding=true",
f"model.scene_model.pretrained_weights={scene_model_weight_path}",
"task=motion_gen",
f"task.has_observation={withstart}",
"task.dataset.repr_type=absolute",
"task.dataset.frame_interval_test=20",
"task.visualizer.name=MotionGenVisualizerHF",
f"task.visualizer.ksample={count}",
f"task.dataset.data_dir={data_dir}",
f"task.dataset.smpl_dir={smpl_dir}",
f"task.dataset.prox_dir={prox_dir}",
f"task.dataset.vposer_dir={vposer_dir}",
]
if opt == True:
override_config += [
"optimizer=motion_in_scene",
"optimizer.scale_type=div_var",
f"optimizer.scale={scale}",
"optimizer.vposer=false",
"optimizer.contact_weight=0.02",
"optimizer.collision_weight=1.0",
"optimizer.smoothness_weight=0.001",
"optimizer.frame_interval=1",
]
initialize(config_path="./scenediffuser/configs", version_base=None)
config = compose(config_name="default", overrides=override_config)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
res_gifs = _sampling(config, scene)
## save sampled motion as .gif file
datestr = time.strftime("%Y-%m-%d", time.localtime(time.time()))
target_dir = os.path.join('./results/motion_generation/', f'd-{datestr}')
os.makedirs(target_dir, exist_ok=True)
res = []
uuid_str = uuid.uuid4()
for i, imgs in enumerate(res_gifs):
target_path = os.path.join(target_dir, f'{uuid_str}--{i}.gif')
imgs = [im.resize((720, 405)) for im in imgs] # resize image for low resolution to save space
img, *img_rest = imgs
img.save(fp=target_path, format='GIF', append_images=img_rest, save_all=True, duration=33.33, loop=0)
res.append(target_path)
hydra.core.global_hydra.GlobalHydra.instance().clear()
return res
def grasp_generation(case_id):
assert isinstance(case_id, str)
res = f"./results/grasp_generation/results/{case_id}/{random.randint(0, 19)}.glb"
if not os.path.exists(res):
results_path = hf_hub_download('SceneDiffuser/SceneDiffuser', 'results/grasp_generation/results.zip')
os.makedirs('./results/grasp_generation/', exist_ok=True)
with zipfile.ZipFile(results_path, 'r') as zip_ref:
zip_ref.extractall('./results/grasp_generation/')
return res
def path_planning(scene, mode, count, seed, opt, scale_opt, pla, scale_pla):
scene_model_weight_path = pretrain_pointtrans_weight_path()
data_dir = path_planning_data_path()
override_config = [
"diffuser=ddpm",
"model=unet",
"model.use_position_embedding=true",
f"model.scene_model.pretrained_weights={scene_model_weight_path}",
"task=path_planning",
"task.visualizer.name=PathPlanningRenderingVisualizerHF",
f"task.visualizer.ksample={count}",
f"task.dataset.data_dir={data_dir}",
"task.dataset.repr_type=relative",
"task.env.name=PathPlanningEnvWrapperHF",
"task.env.inpainting_horizon=16",
"task.env.robot_top=3.0",
"task.env.env_adaption=false"
]
if opt == True:
override_config += [
"optimizer=path_in_scene",
"optimizer.scale_type=div_var",
"optimizer.continuity=false",
f"optimizer.scale={scale_opt}",
]
if pla == True:
override_config += [
"planner=greedy_path_planning",
f"planner.scale={scale_pla}",
"planner.scale_type=div_var",
"planner.greedy_type=all_frame_exp"
]
initialize(config_path="./scenediffuser/configs", version_base=None)
config = compose(config_name="default", overrides=override_config)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if mode == 'Sampling':
img = _sampling(config, scene)
res = (img, 0)
elif mode == 'Planning':
res = _planning(config, scene)
else:
res = (None, 0)
hydra.core.global_hydra.GlobalHydra.instance().clear()
return res
|