Spaces:
Sleeping
Sleeping
File size: 16,700 Bytes
b5bd1aa c5987cc 58b97f2 b91d93b a750190 9aeacca b91d93b a8b2fd4 35e6a69 a8b2fd4 35e6a69 a8b2fd4 35e6a69 a8b2fd4 0611560 35e6a69 6e1639c a8b2fd4 0611560 35e6a69 9aeacca 35e6a69 9aeacca 35e6a69 9782585 35e6a69 d9be852 9782585 35e6a69 d9be852 9782585 35e6a69 d9be852 9782585 35e6a69 a8b2fd4 9782585 35e6a69 d9be852 a750190 60e6faa 35e6a69 60e6faa 9aeacca 0611560 35e6a69 7c1395e 6e1639c a8b2fd4 9aeacca 35e6a69 b91d93b 35e6a69 b91d93b 35e6a69 b91d93b 35e6a69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw, ImageFont
import time
from transformers import AutoModelForCausalLM, AutoTokenizer
import io
import base64
from streamlit_drawable_canvas import st_canvas
# Set page config for a futuristic look
st.set_page_config(page_title="NeuraSense AI", page_icon="π§ ", layout="wide")
# Custom CSS for a futuristic look
st.markdown("""
<style>
body {
color: #E0E0E0;
background-color: #0E1117;
}
.stApp {
background-image: linear-gradient(135deg, #0E1117 0%, #1A1F2C 100%);
}
.stButton>button {
color: #00FFFF;
border-color: #00FFFF;
border-radius: 20px;
}
.stSlider>div>div>div>div {
background-color: #00FFFF;
}
.stTextArea, .stNumberInput, .stSelectbox {
background-color: #1A1F2C;
color: #00FFFF;
border-color: #00FFFF;
border-radius: 20px;
}
.stTextArea:focus, .stNumberInput:focus, .stSelectbox:focus {
box-shadow: 0 0 10px #00FFFF;
}
</style>
""", unsafe_allow_html=True)
# Constants
AVATAR_WIDTH, AVATAR_HEIGHT = 600, 800
# Set up DialoGPT model
@st.cache_resource
def load_model():
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
return tokenizer, model
tokenizer, model = load_model()
# Advanced Sensor Classes
class QuantumSensor:
@staticmethod
def measure(x, y, sensitivity):
return np.sin(x/20) * np.cos(y/20) * sensitivity * np.random.normal(1, 0.1)
class NanoThermalSensor:
@staticmethod
def measure(base_temp, pressure, duration):
return base_temp + 10 * pressure * (1 - np.exp(-duration / 3)) + np.random.normal(0, 0.001)
class AdaptiveTextureSensor:
textures = [
"nano-smooth", "quantum-rough", "neuro-bumpy", "plasma-silky",
"graviton-grainy", "zero-point-soft", "dark-matter-hard", "bose-einstein-condensate"
]
@staticmethod
def measure(x, y):
return AdaptiveTextureSensor.textures[hash((x, y)) % len(AdaptiveTextureSensor.textures)]
class EMFieldSensor:
@staticmethod
def measure(x, y, sensitivity):
return (np.sin(x / 30) * np.cos(y / 30) + np.random.normal(0, 0.1)) * 10 * sensitivity
class NeuralNetworkSimulator:
@staticmethod
def process(inputs):
weights = np.random.rand(len(inputs))
return np.dot(inputs, weights) / np.sum(weights)
# Create more detailed sensation map for the avatar
def create_sensation_map(width, height):
sensation_map = np.zeros((height, width, 12)) # pain, pleasure, pressure, temp, texture, em, tickle, itch, quantum, neural, proprioception, synesthesia
for y in range(height):
for x in range(width):
base_sensitivities = np.random.rand(12) * 0.5 + 0.5
# Enhance certain areas
if 250 < x < 350 and 50 < y < 150: # Head
base_sensitivities *= 1.5
elif 275 < x < 325 and 80 < y < 120: # Eyes
base_sensitivities[0] *= 2 # More sensitive to pain
elif 290 < x < 310 and 100 < y < 120: # Nose
base_sensitivities[4] *= 2 # More sensitive to texture
elif 280 < x < 320 and 120 < y < 140: # Mouth
base_sensitivities[1] *= 2 # More sensitive to pleasure
elif 250 < x < 350 and 250 < y < 550: # Torso
base_sensitivities[2:6] *= 1.3 # Enhance pressure, temp, texture, em
elif (150 < x < 250 or 350 < x < 450) and 250 < y < 600: # Arms
base_sensitivities[0:2] *= 1.2 # Enhance pain and pleasure
elif 200 < x < 400 and 600 < y < 800: # Legs
base_sensitivities[6:8] *= 1.4 # Enhance tickle and itch
elif (140 < x < 160 or 440 < x < 460) and 390 < y < 410: # Hands
base_sensitivities *= 2 # Highly sensitive overall
elif (220 < x < 240 or 360 < x < 380) and 770 < y < 790: # Feet
base_sensitivities[6] *= 2 # Very ticklish
sensation_map[y, x] = base_sensitivities
return sensation_map
avatar_sensation_map = create_sensation_map(AVATAR_WIDTH, AVATAR_HEIGHT)
# Create futuristic human-like avatar
def create_avatar():
img = Image.new('RGBA', (AVATAR_WIDTH, AVATAR_HEIGHT), color=(0, 0, 0, 0))
draw = ImageDraw.Draw(img)
# Body
draw.polygon([(300, 100), (200, 250), (250, 600), (300, 750), (350, 600), (400, 250)], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255))
# Head
draw.ellipse([250, 50, 350, 150], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255))
# Eyes
draw.ellipse([275, 80, 295, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255))
draw.ellipse([305, 80, 325, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255))
# Nose
draw.polygon([(300, 90), (290, 110), (310, 110)], fill=(0, 255, 255, 150))
# Mouth
draw.arc([280, 110, 320, 130], 0, 180, fill=(0, 255, 255, 200), width=2)
# Arms
draw.line([(200, 250), (150, 400)], fill=(0, 255, 255, 200), width=5)
draw.line([(400, 250), (450, 400)], fill=(0, 255, 255, 200), width=5)
# Hands
draw.ellipse([140, 390, 160, 410], fill=(0, 255, 255, 150))
draw.ellipse([440, 390, 460, 410], fill=(0, 255, 255, 150))
# Fingers
for i in range(5):
draw.line([(150 + i*5, 400), (145 + i*5, 420)], fill=(0, 255, 255, 200), width=2)
draw.line([(450 - i*5, 400), (455 - i*5, 420)], fill=(0, 255, 255, 200), width=2)
# Legs
draw.line([(250, 600), (230, 780)], fill=(0, 255, 255, 200), width=5)
draw.line([(350, 600), (370, 780)], fill=(0, 255, 255, 200), width=5)
# Feet
draw.ellipse([220, 770, 240, 790], fill=(0, 255, 255, 150))
draw.ellipse([360, 770, 380, 790], fill=(0, 255, 255, 150))
# Toes
for i in range(5):
draw.line([(225 + i*3, 790), (223 + i*3, 800)], fill=(0, 255, 255, 200), width=2)
draw.line([(365 + i*3, 790), (363 + i*3, 800)], fill=(0, 255, 255, 200), width=2)
# Neural network lines
for _ in range(100):
start = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
end = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
draw.line([start, end], fill=(0, 255, 255, 50), width=1)
return img
avatar_image = create_avatar()
# Streamlit app
st.title("NeuraSense AI: Advanced Humanoid Techno-Sensory Simulation")
# Create two columns
col1, col2 = st.columns([2, 1])
# Avatar display with touch interface
with col1:
st.subheader("Humanoid Avatar Interface")
# Use st_canvas for touch input
canvas_result = st_canvas(
fill_color="rgba(0, 255, 255, 0.3)",
stroke_width=2,
stroke_color="#00FFFF",
background_image=avatar_image,
height=AVATAR_HEIGHT,
width=AVATAR_WIDTH,
drawing_mode="point",
key="canvas",
)
# Touch controls and output
with col2:
st.subheader("Neural Interface Controls")
# Touch duration
touch_duration = st.slider("Interaction Duration (s)", 0.1, 5.0, 1.0, 0.1)
# Touch pressure
touch_pressure = st.slider("Interaction Intensity", 0.1, 2.0, 1.0, 0.1)
# Toggle quantum feature
use_quantum = st.checkbox("Enable Quantum Sensing", value=True)
# Toggle synesthesia
use_synesthesia = st.checkbox("Enable Synesthesia", value=False)
if canvas_result.json_data is not None:
objects = canvas_result.json_data["objects"]
if len(objects) > 0:
last_touch = objects[-1]
touch_x, touch_y = last_touch["left"], last_touch["top"]
sensation = avatar_sensation_map[int(touch_y), int(touch_x)]
(
pain, pleasure, pressure_sens, temp_sens, texture_sens,
em_sens, tickle_sens, itch_sens, quantum_sens, neural_sens,
proprioception_sens, synesthesia_sens
) = sensation
measured_pressure = QuantumSensor.measure(touch_x, touch_y, pressure_sens) * touch_pressure
measured_temp = NanoThermalSensor.measure(37, touch_pressure, touch_duration)
measured_texture = AdaptiveTextureSensor.measure(touch_x, touch_y)
measured_em = EMFieldSensor.measure(touch_x, touch_y, em_sens)
if use_quantum:
quantum_state = QuantumSensor.measure(touch_x, touch_y, quantum_sens)
else:
quantum_state = "N/A"
# Calculate overall sensations
pain_level = pain * measured_pressure * touch_pressure
pleasure_level = pleasure * (measured_temp - 37) / 10
tickle_level = tickle_sens * (1 - np.exp(-touch_duration / 0.5))
itch_level = itch_sens * (1 - np.exp(-touch_duration / 1.5))
# Proprioception (sense of body position)
proprioception = proprioception_sens * np.linalg.norm([touch_x - AVATAR_WIDTH/2, touch_y - AVATAR_HEIGHT/2]) / (AVATAR_WIDTH/2)
# Synesthesia (mixing of senses)
if use_synesthesia:
synesthesia = synesthesia_sens * (measured_pressure + measured_temp + measured_em) / 3
else:
synesthesia = "N/A"
# Neural network simulation
neural_inputs = [pain_level, pleasure_level, measured_pressure, measured_temp, measured_em, tickle_level, itch_level, proprioception]
neural_response = NeuralNetworkSimulator.process(neural_inputs)
st.write("### Sensory Data Analysis")
st.write(f"Interaction Point: ({touch_x:.1f}, {touch_y:.1f})")
st.write(f"Duration: {touch_duration:.1f} s | Intensity: {touch_pressure:.2f}")
# Create a futuristic data display
data_display = f"""
```
βββββββββββββββββββββββββββββββββββββββββββββββ
β Pressure : {measured_pressure:.2f} β
β Temperature : {measured_temp:.2f}Β°C β
β Texture : {measured_texture} β
β EM Field : {measured_em:.2f} ΞΌT β
β Quantum State: {quantum_state:.2f} β
βββββββββββββββββββββββββββββββββββββββββββββββ€
β Pain Level : {pain_level:.2f} β
β Pleasure : {pleasure_level:.2f} β
β Tickle : {tickle_level:.2f} β
β Itch : {itch_level:.2f} β
β Proprioception: {proprioception:.2f} β
β Synesthesia : {synesthesia} β
β Neural Response: {neural_response:.2f} β
βββββββββββββββββββββββββββββββββββββββββββββββ
```
"""
st.code(data_display, language="")
# Generate description
prompt = f"""Human: Analyze the sensory input for a hyper-advanced AI humanoid:
Location: ({touch_x:.1f}, {touch_y:.1f})
Duration: {touch_duration:.1f}s, Intensity: {touch_pressure:.2f}
Pressure: {measured_pressure:.2f}
Temperature: {measured_temp:.2f}Β°C
Texture: {measured_texture}
EM Field: {measured_em:.2f} ΞΌT
Quantum State: {quantum_state}
Resulting in:
Pain: {pain_level:.2f}, Pleasure: {pleasure_level:.2f}
Tickle: {tickle_level:.2f}, Itch: {itch_level:.2f}
Proprioception: {proprioception:.2f}
Synesthesia: {synesthesia}
Neural Response: {neural_response:.2f}
Provide a detailed, scientific analysis of the AI's experience.
AI:"""
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output = model.generate(
input_ids,
max_length=400,
num_return_sequences=1,
no_repeat_ngram_size=2,
top_k=50,
top_p=0.95,
temperature=0.7
)
response = tokenizer.decode(output[0], skip_special_tokens=True).split("AI:")[-1].strip()
st.write("### AI's Sensory Analysis:")
st.write(response)
# Visualize sensation map
st.subheader("Quantum Neuro-Sensory Map")
fig, axs = plt.subplots(3, 4, figsize=(20, 15))
titles = [
'Pain', 'Pleasure', 'Pressure', 'Temperature', 'Texture',
'EM Field', 'Tickle', 'Itch', 'Quantum', 'Neural',
'Proprioception', 'Synesthesia'
]
for i, title in enumerate(titles):
ax = axs[i // 4, i % 4]
im = ax.imshow(avatar_sensation_map[:, :, i], cmap='plasma')
ax.set_title(title)
fig.colorbar(im, ax=ax)
plt.tight_layout()
st.pyplot(fig)
st.write("The quantum neuro-sensory map illustrates the varying sensitivities across the AI's body. Brighter areas indicate heightened responsiveness to specific stimuli.")
# Add information about the AI's advanced capabilities
st.subheader("NeuraSense AI: Cutting-Edge Sensory Capabilities")
st.write("""
This hyper-advanced AI humanoid incorporates revolutionary sensory technology:
1. Quantum-Enhanced Pressure Sensors: Utilize quantum tunneling effects for unparalleled sensitivity.
2. Nano-scale Thermal Detectors: Capable of detecting temperature variations to 0.001Β°C.
3. Adaptive Texture Analysis: Employs machine learning to continually refine texture perception.
4. Electromagnetic Field Sensors: Can detect and analyze complex EM patterns in the environment.
5. Quantum State Detector: Interprets quantum phenomena, adding a new dimension to sensory input.
6. Neural Network Integration: Simulates complex interplay of sensations, creating emergent experiences.
7. Proprioception Simulation: Accurately models the AI's sense of body position and movement.
8. Synesthesia Emulation: Allows for cross-modal sensory experiences, mixing different sensory inputs.
9. Tickle and Itch Simulation: Replicates these unique sensations with quantum-level precision.
10. Adaptive Pain and Pleasure Modeling: Simulates complex emotional and physical responses to stimuli.
The AI's responses are generated using an advanced language model, providing detailed scientific analysis of its sensory experiences. This simulation showcases the potential for creating incredibly sophisticated and responsive artificial sensory systems that go beyond human capabilities.
""")
# Interactive sensory exploration
st.subheader("Interactive Sensory Exploration")
exploration_type = st.selectbox("Choose a sensory exploration:",
["Quantum Field Fluctuations", "Synesthesia Experience", "Proprioceptive Mapping"])
if exploration_type == "Quantum Field Fluctuations":
st.write("Observe how quantum fields fluctuate across the AI's body.")
quantum_field = np.array([[QuantumSensor.measure(x, y, 1) for x in range(AVATAR_WIDTH)] for y in range(AVATAR_HEIGHT)])
# Save the plot to an in-memory buffer
buf = io.BytesIO()
plt.figure(figsize=(8, 6))
plt.imshow(quantum_field, cmap='viridis')
plt.savefig(buf, format='png')
# Create a PIL Image object from the buffer
quantum_image = Image.open(buf)
# Display the image using st.image()
st.image(quantum_image, use_column_width=True)
elif exploration_type == "Synesthesia Experience":
st.write("Experience how the AI might perceive colors as sounds or textures as tastes.")
synesthesia_map = np.random.rand(AVATAR_HEIGHT, AVATAR_WIDTH, 3)
st.image(Image.fromarray((synesthesia_map * 255).astype(np.uint8)), use_column_width=True)
elif exploration_type == "Proprioceptive Mapping":
st.write("Explore the AI's sense of body position and movement.")
proprioceptive_map = np.array([[np.linalg.norm([x - AVATAR_WIDTH/2, y - AVATAR_HEIGHT/2]) / (AVATAR_WIDTH/2)
for x in range(AVATAR_WIDTH)] for y in range(AVATAR_HEIGHT)])
# Save the plot to an in-memory buffer
buf = io.BytesIO()
plt.figure(figsize=(8, 6))
plt.imshow(proprioceptive_map, cmap='coolwarm')
plt.savefig(buf, format='png')
# Create a PIL Image object from the buffer
proprioceptive_image = Image.open(buf)
# Display the image using st.image()
st.image(proprioceptive_image, use_column_width=True)
# Footer
st.write("---")
st.write("NeuraSense AI: Quantum-Enhanced Sensory Simulation v4.0")
st.write("Disclaimer: This is an advanced simulation and does not represent current technological capabilities.")
|