File size: 16,700 Bytes
b5bd1aa
c5987cc
58b97f2
b91d93b
a750190
9aeacca
b91d93b
a8b2fd4
 
35e6a69
 
a8b2fd4
 
 
 
35e6a69
 
a8b2fd4
 
 
35e6a69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8b2fd4
 
0611560
35e6a69
 
6e1639c
a8b2fd4
0611560
35e6a69
 
9aeacca
 
 
35e6a69
 
 
 
 
9aeacca
 
 
35e6a69
 
9782585
 
35e6a69
 
 
 
 
d9be852
9782585
35e6a69
 
 
 
 
d9be852
9782585
35e6a69
 
 
 
 
 
 
 
 
 
d9be852
9782585
35e6a69
 
 
 
 
a8b2fd4
9782585
35e6a69
 
 
 
 
 
d9be852
a750190
60e6faa
35e6a69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60e6faa
9aeacca
0611560
35e6a69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c1395e
6e1639c
a8b2fd4
9aeacca
35e6a69
 
b91d93b
 
 
35e6a69
 
 
b91d93b
35e6a69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b91d93b
 
 
35e6a69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw, ImageFont
import time
from transformers import AutoModelForCausalLM, AutoTokenizer
import io
import base64
from streamlit_drawable_canvas import st_canvas



# Set page config for a futuristic look
st.set_page_config(page_title="NeuraSense AI", page_icon="🧠", layout="wide")



# Custom CSS for a futuristic look
st.markdown("""
<style>
   body {
       color: #E0E0E0;
       background-color: #0E1117;
   }
   .stApp {
       background-image: linear-gradient(135deg, #0E1117 0%, #1A1F2C 100%);
   }
   .stButton>button {
       color: #00FFFF;
       border-color: #00FFFF;
       border-radius: 20px;
   }
   .stSlider>div>div>div>div {
       background-color: #00FFFF;
   }
   .stTextArea, .stNumberInput, .stSelectbox {
       background-color: #1A1F2C;
       color: #00FFFF;
       border-color: #00FFFF;
       border-radius: 20px;
   }
   .stTextArea:focus, .stNumberInput:focus, .stSelectbox:focus {
       box-shadow: 0 0 10px #00FFFF;
   }
</style>
""", unsafe_allow_html=True)



# Constants
AVATAR_WIDTH, AVATAR_HEIGHT = 600, 800



# Set up DialoGPT model
@st.cache_resource
def load_model():
   tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
   model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
   return tokenizer, model



tokenizer, model = load_model()



# Advanced Sensor Classes
class QuantumSensor:
   @staticmethod
   def measure(x, y, sensitivity):
       return np.sin(x/20) * np.cos(y/20) * sensitivity * np.random.normal(1, 0.1)



class NanoThermalSensor:
   @staticmethod
   def measure(base_temp, pressure, duration):
       return base_temp + 10 * pressure * (1 - np.exp(-duration / 3)) + np.random.normal(0, 0.001)



class AdaptiveTextureSensor:
   textures = [
       "nano-smooth", "quantum-rough", "neuro-bumpy", "plasma-silky",
       "graviton-grainy", "zero-point-soft", "dark-matter-hard", "bose-einstein-condensate"
   ]
  
   @staticmethod
   def measure(x, y):
       return AdaptiveTextureSensor.textures[hash((x, y)) % len(AdaptiveTextureSensor.textures)]



class EMFieldSensor:
   @staticmethod
   def measure(x, y, sensitivity):
       return (np.sin(x / 30) * np.cos(y / 30) + np.random.normal(0, 0.1)) * 10 * sensitivity



class NeuralNetworkSimulator:
   @staticmethod
   def process(inputs):
       weights = np.random.rand(len(inputs))
       return np.dot(inputs, weights) / np.sum(weights)



# Create more detailed sensation map for the avatar
def create_sensation_map(width, height):
   sensation_map = np.zeros((height, width, 12))  # pain, pleasure, pressure, temp, texture, em, tickle, itch, quantum, neural, proprioception, synesthesia
   for y in range(height):
       for x in range(width):
           base_sensitivities = np.random.rand(12) * 0.5 + 0.5
          
           # Enhance certain areas
           if 250 < x < 350 and 50 < y < 150:  # Head
               base_sensitivities *= 1.5
           elif 275 < x < 325 and 80 < y < 120:  # Eyes
               base_sensitivities[0] *= 2  # More sensitive to pain
           elif 290 < x < 310 and 100 < y < 120:  # Nose
               base_sensitivities[4] *= 2  # More sensitive to texture
           elif 280 < x < 320 and 120 < y < 140:  # Mouth
               base_sensitivities[1] *= 2  # More sensitive to pleasure
           elif 250 < x < 350 and 250 < y < 550:  # Torso
               base_sensitivities[2:6] *= 1.3  # Enhance pressure, temp, texture, em
           elif (150 < x < 250 or 350 < x < 450) and 250 < y < 600:  # Arms
               base_sensitivities[0:2] *= 1.2  # Enhance pain and pleasure
           elif 200 < x < 400 and 600 < y < 800:  # Legs
               base_sensitivities[6:8] *= 1.4  # Enhance tickle and itch
           elif (140 < x < 160 or 440 < x < 460) and 390 < y < 410:  # Hands
               base_sensitivities *= 2  # Highly sensitive overall
           elif (220 < x < 240 or 360 < x < 380) and 770 < y < 790:  # Feet
               base_sensitivities[6] *= 2  # Very ticklish
          
           sensation_map[y, x] = base_sensitivities
  
   return sensation_map



avatar_sensation_map = create_sensation_map(AVATAR_WIDTH, AVATAR_HEIGHT)



# Create futuristic human-like avatar
def create_avatar():
   img = Image.new('RGBA', (AVATAR_WIDTH, AVATAR_HEIGHT), color=(0, 0, 0, 0))
   draw = ImageDraw.Draw(img)
  
   # Body
   draw.polygon([(300, 100), (200, 250), (250, 600), (300, 750), (350, 600), (400, 250)], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255))
  
   # Head
   draw.ellipse([250, 50, 350, 150], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255))
  
   # Eyes
   draw.ellipse([275, 80, 295, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255))
   draw.ellipse([305, 80, 325, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255))
  
   # Nose
   draw.polygon([(300, 90), (290, 110), (310, 110)], fill=(0, 255, 255, 150))
  
   # Mouth
   draw.arc([280, 110, 320, 130], 0, 180, fill=(0, 255, 255, 200), width=2)
  
  # Arms
   draw.line([(200, 250), (150, 400)], fill=(0, 255, 255, 200), width=5)
   draw.line([(400, 250), (450, 400)], fill=(0, 255, 255, 200), width=5)
  
   # Hands
   draw.ellipse([140, 390, 160, 410], fill=(0, 255, 255, 150))
   draw.ellipse([440, 390, 460, 410], fill=(0, 255, 255, 150))
  
   # Fingers
   for i in range(5):
       draw.line([(150 + i*5, 400), (145 + i*5, 420)], fill=(0, 255, 255, 200), width=2)
       draw.line([(450 - i*5, 400), (455 - i*5, 420)], fill=(0, 255, 255, 200), width=2)
  
   # Legs
   draw.line([(250, 600), (230, 780)], fill=(0, 255, 255, 200), width=5)
   draw.line([(350, 600), (370, 780)], fill=(0, 255, 255, 200), width=5)
  
   # Feet
   draw.ellipse([220, 770, 240, 790], fill=(0, 255, 255, 150))
   draw.ellipse([360, 770, 380, 790], fill=(0, 255, 255, 150))
  
   # Toes
   for i in range(5):
       draw.line([(225 + i*3, 790), (223 + i*3, 800)], fill=(0, 255, 255, 200), width=2)
       draw.line([(365 + i*3, 790), (363 + i*3, 800)], fill=(0, 255, 255, 200), width=2)
  
   # Neural network lines
   for _ in range(100):
       start = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
       end = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
       draw.line([start, end], fill=(0, 255, 255, 50), width=1)
  
   return img



avatar_image = create_avatar()



# Streamlit app
st.title("NeuraSense AI: Advanced Humanoid Techno-Sensory Simulation")



# Create two columns
col1, col2 = st.columns([2, 1])



# Avatar display with touch interface
with col1:
   st.subheader("Humanoid Avatar Interface")
  
   # Use st_canvas for touch input
   canvas_result = st_canvas(
       fill_color="rgba(0, 255, 255, 0.3)",
       stroke_width=2,
       stroke_color="#00FFFF",
       background_image=avatar_image,
       height=AVATAR_HEIGHT,
       width=AVATAR_WIDTH,
       drawing_mode="point",
       key="canvas",
   )



# Touch controls and output
with col2:
   st.subheader("Neural Interface Controls")
  
   # Touch duration
   touch_duration = st.slider("Interaction Duration (s)", 0.1, 5.0, 1.0, 0.1)
  
   # Touch pressure
   touch_pressure = st.slider("Interaction Intensity", 0.1, 2.0, 1.0, 0.1)
  
   # Toggle quantum feature
   use_quantum = st.checkbox("Enable Quantum Sensing", value=True)
  
   # Toggle synesthesia
   use_synesthesia = st.checkbox("Enable Synesthesia", value=False)
  
   if canvas_result.json_data is not None:
       objects = canvas_result.json_data["objects"]
       if len(objects) > 0:
           last_touch = objects[-1]
           touch_x, touch_y = last_touch["left"], last_touch["top"]
          
           sensation = avatar_sensation_map[int(touch_y), int(touch_x)]
           (
               pain, pleasure, pressure_sens, temp_sens, texture_sens,
               em_sens, tickle_sens, itch_sens, quantum_sens, neural_sens,
               proprioception_sens, synesthesia_sens
           ) = sensation



           measured_pressure = QuantumSensor.measure(touch_x, touch_y, pressure_sens) * touch_pressure
           measured_temp = NanoThermalSensor.measure(37, touch_pressure, touch_duration)
           measured_texture = AdaptiveTextureSensor.measure(touch_x, touch_y)
           measured_em = EMFieldSensor.measure(touch_x, touch_y, em_sens)
          
           if use_quantum:
               quantum_state = QuantumSensor.measure(touch_x, touch_y, quantum_sens)
           else:
               quantum_state = "N/A"



           # Calculate overall sensations
           pain_level = pain * measured_pressure * touch_pressure
           pleasure_level = pleasure * (measured_temp - 37) / 10
           tickle_level = tickle_sens * (1 - np.exp(-touch_duration / 0.5))
           itch_level = itch_sens * (1 - np.exp(-touch_duration / 1.5))
          
           # Proprioception (sense of body position)
           proprioception = proprioception_sens * np.linalg.norm([touch_x - AVATAR_WIDTH/2, touch_y - AVATAR_HEIGHT/2]) / (AVATAR_WIDTH/2)
          
           # Synesthesia (mixing of senses)
           if use_synesthesia:
               synesthesia = synesthesia_sens * (measured_pressure + measured_temp + measured_em) / 3
           else:
               synesthesia = "N/A"
          
           # Neural network simulation
           neural_inputs = [pain_level, pleasure_level, measured_pressure, measured_temp, measured_em, tickle_level, itch_level, proprioception]
           neural_response = NeuralNetworkSimulator.process(neural_inputs)



           st.write("### Sensory Data Analysis")
           st.write(f"Interaction Point: ({touch_x:.1f}, {touch_y:.1f})")
           st.write(f"Duration: {touch_duration:.1f} s | Intensity: {touch_pressure:.2f}")
          
           # Create a futuristic data display
           data_display = f"""
           ```
           β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
           β”‚ Pressure     : {measured_pressure:.2f}      β”‚
           β”‚ Temperature  : {measured_temp:.2f}Β°C        β”‚
           β”‚ Texture      : {measured_texture}           β”‚
           β”‚ EM Field     : {measured_em:.2f} ΞΌT         β”‚
           β”‚ Quantum State: {quantum_state:.2f}          β”‚
           β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
           β”‚ Pain Level   : {pain_level:.2f}             β”‚
           β”‚ Pleasure     : {pleasure_level:.2f}         β”‚
           β”‚ Tickle       : {tickle_level:.2f}           β”‚
           β”‚ Itch         : {itch_level:.2f}             β”‚
           β”‚ Proprioception: {proprioception:.2f}        β”‚
           β”‚ Synesthesia  : {synesthesia}                β”‚
           β”‚ Neural Response: {neural_response:.2f}      β”‚
           β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
           ```
           """
       st.code(data_display, language="")



           # Generate description
       prompt = f"""Human: Analyze the sensory input for a hyper-advanced AI humanoid:
           Location: ({touch_x:.1f}, {touch_y:.1f})
           Duration: {touch_duration:.1f}s, Intensity: {touch_pressure:.2f}
           Pressure: {measured_pressure:.2f}
           Temperature: {measured_temp:.2f}Β°C
           Texture: {measured_texture}
           EM Field: {measured_em:.2f} ΞΌT
           Quantum State: {quantum_state}
           Resulting in:
           Pain: {pain_level:.2f}, Pleasure: {pleasure_level:.2f}
           Tickle: {tickle_level:.2f}, Itch: {itch_level:.2f}
           Proprioception: {proprioception:.2f}
           Synesthesia: {synesthesia}
           Neural Response: {neural_response:.2f}
           Provide a detailed, scientific analysis of the AI's experience.
           AI:"""



input_ids = tokenizer.encode(prompt, return_tensors="pt")



output = model.generate(
   input_ids,
   max_length=400,
   num_return_sequences=1,
   no_repeat_ngram_size=2,
   top_k=50,
   top_p=0.95,
   temperature=0.7
)



response = tokenizer.decode(output[0], skip_special_tokens=True).split("AI:")[-1].strip()



st.write("### AI's Sensory Analysis:")
st.write(response)



# Visualize sensation map
st.subheader("Quantum Neuro-Sensory Map")
fig, axs = plt.subplots(3, 4, figsize=(20, 15))
titles = [
   'Pain', 'Pleasure', 'Pressure', 'Temperature', 'Texture',
   'EM Field', 'Tickle', 'Itch', 'Quantum', 'Neural',
   'Proprioception', 'Synesthesia'
]



for i, title in enumerate(titles):
   ax = axs[i // 4, i % 4]
   im = ax.imshow(avatar_sensation_map[:, :, i], cmap='plasma')
   ax.set_title(title)
   fig.colorbar(im, ax=ax)



plt.tight_layout()
st.pyplot(fig)



st.write("The quantum neuro-sensory map illustrates the varying sensitivities across the AI's body. Brighter areas indicate heightened responsiveness to specific stimuli.")



# Add information about the AI's advanced capabilities
st.subheader("NeuraSense AI: Cutting-Edge Sensory Capabilities")
st.write("""
This hyper-advanced AI humanoid incorporates revolutionary sensory technology:
1. Quantum-Enhanced Pressure Sensors: Utilize quantum tunneling effects for unparalleled sensitivity.
2. Nano-scale Thermal Detectors: Capable of detecting temperature variations to 0.001Β°C.
3. Adaptive Texture Analysis: Employs machine learning to continually refine texture perception.
4. Electromagnetic Field Sensors: Can detect and analyze complex EM patterns in the environment.
5. Quantum State Detector: Interprets quantum phenomena, adding a new dimension to sensory input.
6. Neural Network Integration: Simulates complex interplay of sensations, creating emergent experiences.
7. Proprioception Simulation: Accurately models the AI's sense of body position and movement.
8. Synesthesia Emulation: Allows for cross-modal sensory experiences, mixing different sensory inputs.
9. Tickle and Itch Simulation: Replicates these unique sensations with quantum-level precision.
10. Adaptive Pain and Pleasure Modeling: Simulates complex emotional and physical responses to stimuli.


The AI's responses are generated using an advanced language model, providing detailed scientific analysis of its sensory experiences. This simulation showcases the potential for creating incredibly sophisticated and responsive artificial sensory systems that go beyond human capabilities.
""")



# Interactive sensory exploration
st.subheader("Interactive Sensory Exploration")
exploration_type = st.selectbox("Choose a sensory exploration:",
                               ["Quantum Field Fluctuations", "Synesthesia Experience", "Proprioceptive Mapping"])



if exploration_type == "Quantum Field Fluctuations":
   st.write("Observe how quantum fields fluctuate across the AI's body.")
   quantum_field = np.array([[QuantumSensor.measure(x, y, 1) for x in range(AVATAR_WIDTH)] for y in range(AVATAR_HEIGHT)])
  
   # Save the plot to an in-memory buffer
   buf = io.BytesIO()
   plt.figure(figsize=(8, 6))
   plt.imshow(quantum_field, cmap='viridis')
   plt.savefig(buf, format='png')
  
   # Create a PIL Image object from the buffer
   quantum_image = Image.open(buf)
  
   # Display the image using st.image()
   st.image(quantum_image, use_column_width=True)



elif exploration_type == "Synesthesia Experience":
   st.write("Experience how the AI might perceive colors as sounds or textures as tastes.")
   synesthesia_map = np.random.rand(AVATAR_HEIGHT, AVATAR_WIDTH, 3)
   st.image(Image.fromarray((synesthesia_map * 255).astype(np.uint8)), use_column_width=True)



elif exploration_type == "Proprioceptive Mapping":
   st.write("Explore the AI's sense of body position and movement.")
   proprioceptive_map = np.array([[np.linalg.norm([x - AVATAR_WIDTH/2, y - AVATAR_HEIGHT/2]) / (AVATAR_WIDTH/2)
                                   for x in range(AVATAR_WIDTH)] for y in range(AVATAR_HEIGHT)])
  
   # Save the plot to an in-memory buffer
   buf = io.BytesIO()
   plt.figure(figsize=(8, 6))
   plt.imshow(proprioceptive_map, cmap='coolwarm')
   plt.savefig(buf, format='png')
  
   # Create a PIL Image object from the buffer
   proprioceptive_image = Image.open(buf)
  
   # Display the image using st.image()
   st.image(proprioceptive_image, use_column_width=True)
# Footer
st.write("---")
st.write("NeuraSense AI: Quantum-Enhanced Sensory Simulation v4.0")
st.write("Disclaimer: This is an advanced simulation and does not represent current technological capabilities.")