File size: 12,104 Bytes
cd0d6f2
6454b14
 
eddda5a
7576d10
b73d81d
cd0d6f2
5bbee66
6e8c2ef
2c688c3
889a367
eddda5a
e213266
7576d10
6454b14
 
 
8353801
cd0d6f2
 
8353801
 
02cdb95
021ea63
5636b5c
 
588ce8d
 
 
 
8353801
cd0d6f2
5636b5c
f3a075d
02cdb95
555f068
b3cb6e3
 
021ea63
588ce8d
 
 
 
 
b3cb6e3
 
 
 
 
 
 
 
 
 
 
 
 
7cb6b0b
 
 
 
 
 
b3cb6e3
 
7cb6b0b
 
 
 
 
afeb582
7cb6b0b
 
 
 
afeb582
b3cb6e3
 
7cb6b0b
690e199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e8b98f
 
 
 
afeb582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e8b98f
afeb582
 
 
 
3e8b98f
afeb582
 
 
 
 
 
 
 
 
 
 
3e8b98f
afeb582
3e8b98f
690e199
afeb582
3e8b98f
690e199
 
 
 
 
3e8b98f
b3cb6e3
 
3e8b98f
 
555f068
7b5103c
6454b14
021ea63
6454b14
 
 
 
 
 
 
5636b5c
6454b14
 
7b5103c
 
 
 
5636b5c
6454b14
5636b5c
6454b14
 
2098c98
 
 
 
 
6454b14
690e199
 
6454b14
2098c98
 
7b5103c
3e8b98f
 
588ce8d
037f9a9
588ce8d
 
 
 
2098c98
 
 
 
 
 
 
 
 
 
b3cb6e3
 
 
f47844c
 
b3cb6e3
afeb582
690e199
2098c98
690e199
afeb582
3e8b98f
f47844c
afeb582
f47844c
 
690e199
 
588ce8d
2098c98
 
588ce8d
3e8b98f
afeb582
 
 
 
690e199
 
6454b14
 
5636b5c
6454b14
690e199
5636b5c
588ce8d
555f068
6454b14
690e199
 
 
 
b3cb6e3
6454b14
 
 
 
 
780307f
690e199
 
7576d10
4809f98
3e8b98f
4809f98
7b5103c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

import subprocess
import os  
if os.getenv('SYSTEM') == 'spaces':

    subprocess.call('pip install -U openmim'.split())
    subprocess.call('pip install python-dotenv'.split())
    subprocess.call('pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113'.split())
    subprocess.call('mim install mmcv>=2.0.0'.split())
    subprocess.call('mim install mmengine==0.7.2'.split())
    subprocess.call('mim install mmdet==3.0.0'.split())
    subprocess.call('pip install opencv-python-headless==4.5.5.64'.split())
    subprocess.call('pip install git+https://github.com/cocodataset/panopticapi.git'.split())

import gradio as gr

from huggingface_hub import snapshot_download
import cv2 
import dotenv 
dotenv.load_dotenv()
import numpy as np
import gradio as gr
import glob
from inference import inference_frame,inference_frame_serial
from inference import inference_frame_par_ready
from inference import process_frame
from inference import classes
from inference import class_sizes_lower
from metrics import process_results_for_plot
from metrics import prediction_dashboard
import os
import pathlib
import multiprocessing as mp
from time import time

if not os.path.exists('videos_example'):
    REPO_ID='SharkSpace/videos_examples'
    snapshot_download(repo_id=REPO_ID, token=os.environ.get('SHARK_MODEL'),repo_type='dataset',local_dir='videos_example')

theme = gr.themes.Soft(
    primary_hue="sky",
    neutral_hue="slate",
)


def add_border(frame, color = (255, 0, 0), thickness = 2):
    # Add a red border to the image
    relative = max(frame.shape[0],frame.shape[1])
    top = int(relative*0.025)
    bottom = int(relative*0.025)
    left = int(relative*0.025)
    right =  int(relative*0.025)
    # Add the border to the image
    bordered_image = cv2.copyMakeBorder(frame, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
    
    return bordered_image 
    


def overlay_text_on_image(image, text_list, font=cv2.FONT_HERSHEY_SIMPLEX, font_size=0.5, font_thickness=1, margin=10, color=(255, 255, 255), box_color=(0,0,0)):
    relative = min(image.shape[0], image.shape[1])
    y0, dy = margin, int(relative*0.1)  # start y position and line gap
    
    for i, line in enumerate(text_list):
        y = y0 + i * dy
        if 'Shark' in line or 'Human' in line:
            current_font_size = font_size * 1.5
            text_width, text_height = cv2.getTextSize(line, font, current_font_size, font_thickness)[0]
            cv2.rectangle(image, (image.shape[1] - text_width - margin - 5, y - text_height), (image.shape[1] - margin + 5, y + 5), box_color, -1)
            cv2.putText(image, line, (image.shape[1] - text_width - margin, y), font, current_font_size, color, font_thickness, lineType=cv2.LINE_AA)
        else:
            current_font_size = font_size
            text_width, text_height = cv2.getTextSize(line, font, current_font_size, font_thickness)[0]
            cv2.rectangle(image, (image.shape[1] - text_width - margin - 5, y - text_height), (image.shape[1] - margin + 5, y + 5), box_color, -1)
            cv2.putText(image, line, (image.shape[1] - text_width - margin, y), font, current_font_size, color, font_thickness, lineType=cv2.LINE_AA)
            
    return image


def overlay_logo(frame,logo, position=(10, 10)):
    """
    Overlay a transparent logo (with alpha channel) on a frame.

    Parameters:
    - frame: The main image/frame to overlay the logo on.
    - logo_path: Path to the logo image.
    - position: (x, y) tuple indicating where the logo starts (top left corner).
    """
    # Load the logo and its alpha channel
    alpha_channel = np.ones(logo.shape[:2], dtype=logo.dtype)
    print(logo.min(),logo.max())
    logo = np.dstack((logo, alpha_channel))
    
    indexes = logo[:,:,1]>150
    logo[indexes,3] = 0
    l_channels = cv2.split(logo)
    if len(l_channels) != 4:
        raise ValueError("Logo doesn't have an alpha channel!")
    l_b, l_g, l_r, l_alpha = l_channels
    cv2.imwrite('l_alpha.png',l_alpha*255)
    # Extract regions of interest (ROI) from both images
    roi = frame[position[1]:position[1]+logo.shape[0], position[0]:position[0]+logo.shape[1]]

    # Blend the logo using the alpha channel
    for channel in range(0, 3):
        roi[:, :, channel] = (l_alpha ) * l_channels[channel] + (1.0 - l_alpha ) * roi[:, :, channel]

    return frame
    
    
def add_danger_symbol_from_image(frame, top_pred):  
    relative = max(frame.shape[0],frame.shape[1])
    if top_pred['shark_sighted'] and top_pred['dangerous_dist']:
        # Add the danger symbol
        danger_symbol = cv2.imread('static/danger_symbol.jpeg')
        danger_symbol = cv2.resize(danger_symbol, (int(relative*0.1), int(relative*0.1)), interpolation = cv2.INTER_AREA)[:,:,::-1]
        frame = overlay_logo(frame,danger_symbol, position=(int(relative*0.05), int(relative*0.05)))
    return frame

def draw_cockpit(frame, top_pred,cnt):
    # Bullet points:
    high_danger_color = (255,0,0)
    low_danger_color = yellowgreen = (154,205,50)
    
    if top_pred['shark_sighted'] > 0:
        shark_suspected = 'Shark Sighted !'
    elif top_pred['shark_suspected'] > 0:
        shark_suspected = 'Shark Suspected !'
    else:
        shark_suspected = 'No Sharks ...'

    if top_pred['human_sighted'] > 0:
        human_suspected = 'Human Sighted !'
    elif top_pred['human_suspected'] > 0:
        human_suspected = 'Human Suspected !'
    else:
        human_suspected = 'No Humans ...'

    shark_size_estimate = 'Biggest shark size: ' + str(top_pred['biggest_shark_size']) if top_pred['biggest_shark_size'] else 'Biggest shark size: ...'
    shark_weight_estimate = 'Biggest shark weight: ' + str(top_pred['biggest_shark_weight']) if top_pred['biggest_shark_weight'] else 'Biggest shark weight: ...'

    danger_level = 'Danger Level: ' 
    danger_level += 'High' if top_pred['dangerous_dist_confirmed'] else 'Low'

    danger_color = 'orangered' if top_pred['dangerous_dist_confirmed'] else 'yellowgreen'

    # Create a list of strings to plot
    strings = [shark_suspected, human_suspected, shark_size_estimate, shark_weight_estimate, danger_level]
    
    # shark_sighted = 'Shark Detected: ' + str(top_pred['shark_sighted'])
    # human_sighted = 'Number of Humans: ' + str(top_pred['human_n'])
    # shark_size_estimate = 'Biggest shark size: ' + str(top_pred['biggest_shark_size'])
    # shark_weight_estimate = 'Biggest shark weight: ' + str(top_pred['biggest_shark_weight'])
    # danger_level = 'Danger Level: ' 
    # danger_level += 'High' if top_pred['dangerous_dist'] else 'Low'
    # danger_color = 'orangered' if top_pred['dangerous_dist'] else 'yellowgreen'
    # # Create a list of strings to plot
    # strings = [shark_sighted, human_sighted, shark_size_estimate, shark_weight_estimate, danger_level]
    relative = max(frame.shape[0],frame.shape[1])
    if top_pred['shark_sighted'] and top_pred['dangerous_dist_confirmed'] and cnt%2 == 0:
        frame  = add_border(frame, color=high_danger_color, thickness=int(relative*0.025))
        frame = add_danger_symbol_from_image(frame, top_pred)
    elif top_pred['shark_sighted'] and not top_pred['dangerous_dist_confirmed'] and cnt%2 == 0:
         frame  = add_border(frame, color=low_danger_color, thickness=int(relative*0.025))
         frame = add_danger_symbol_from_image(frame, top_pred)
    else: 
        
        frame  = add_border(frame, color=(0,0,0), thickness=int(relative*0.025))
        
    overlay_text_on_image(frame, strings, font=cv2.FONT_HERSHEY_SIMPLEX, font_size=relative*0.0007, font_thickness=1, margin=int(relative*0.05), color=(255, 255, 255))
    return frame
    
    

def process_video(input_video, out_fps = 'auto', skip_frames = 7):
    print('Processing video: ')
    cap = cv2.VideoCapture(input_video)

    output_path = "output.mp4"
    if out_fps != 'auto' and type(out_fps) == int:
        fps = int(out_fps)
    else:
        fps = int(cap.get(cv2.CAP_PROP_FPS))
        if out_fps == 'auto':
            fps = int(fps / skip_frames)

    width  = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    
    if width > 1920 or height > 1080:
        width = int(width//4)
        height = int(height//4)

    video = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))

    iterating, frame = cap.read()
    cnt = 0
    drawn_count = 0
    last_5_shark_detected = np.array([0, 0, 0, 0, 0])
    last_5_human_detected = np.array([0, 0, 0, 0, 0])
    last_5_dangerous_dist = np.array([0, 0, 0, 0, 0])

    while iterating:
        print('overall count ', cnt)
        
        if (cnt % skip_frames) == 0:
            drawn_count += 1

            frame = cv2.resize(frame, (int(width), int(height)))
            print('starting Frame: ', cnt)
            # flip frame vertically
            display_frame, result = inference_frame_serial(frame)
            
            #print(result)
            top_pred = process_results_for_plot(predictions = result.numpy(),
                                                classes = classes,
                                                class_sizes = class_sizes_lower)

            # add to last 5   
            last_5_shark_detected[drawn_count % 5] = int(top_pred['shark_n'] > 0)
            last_5_human_detected[drawn_count % 5] = int(top_pred['human_n'] > 0)
            last_5_dangerous_dist[drawn_count % 5] = int(top_pred['dangerous_dist'] > 0)

            top_pred['shark_sighted'] = int(np.sum(last_5_shark_detected) > 3)
            top_pred['human_sighted'] = int(np.sum(last_5_human_detected) > 3)
            top_pred['dangerous_dist_confirmed'] = int(np.sum(last_5_dangerous_dist) > 3)

            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            prediction_frame = cv2.cvtColor(display_frame, cv2.COLOR_BGR2RGB)
            
            #
            #video.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
            
            if cnt*skip_frames %2==0: 
                prediction_frame = cv2.resize(prediction_frame, (int(width), int(height)))
                frame = prediction_frame
                
            #if  top_pred['shark_sighted'] or top_pred['shark_suspected']: 
                frame = draw_cockpit(frame, top_pred,cnt*skip_frames)
            
            
            frame = cv2.resize(frame, (int(width), int(height)))
            video.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
                
            
            pred_dashbord = prediction_dashboard(top_pred = top_pred)

            drawn_count += 1
            #print('sending frame')
            print('finalizing frame:',cnt)
            #print(pred_dashbord.shape)
            #print(frame.shape)
            #print(prediction_frame.shape)
            #print(width, height)
            yield frame , None
        
        cnt += 1
        iterating, frame = cap.read()
    
    video.release()
    yield None,  output_path

with gr.Blocks(theme=theme) as demo:
    with gr.Row().style(equal_height=True,height='25%'):
        input_video = gr.Video(label="Input")
        original_frames = gr.Image(label="Processed Frame").style( height=650)
        #processed_frames = gr.Image(label="Shark Engine")
        output_video = gr.Video(label="Output Video")
        #dashboard = gr.Image(label="Events")
        
    with gr.Row():
        paths = sorted(pathlib.Path('videos_example/').rglob('*.mp4'))
        samples=[[path.as_posix()] for path in paths if 'raw_videos'  in str(path)]
        examples = gr.Examples(samples, inputs=input_video)
        process_video_btn = gr.Button("Process Video")

    #process_video_btn.click(process_video, input_video, [processed_frames, original_frames, output_video, dashboard])
    process_video_btn.click(process_video, input_video, [ original_frames, output_video])
demo.queue()
if os.getenv('SYSTEM') == 'spaces':
    demo.launch(width='40%',auth=(os.environ.get('SHARK_USERNAME'), os.environ.get('SHARK_PASSWORD')))
else: 
    demo.launch(debug=True)