Spaces:
Runtime error
Runtime error
File size: 9,141 Bytes
cd0d6f2 6454b14 eddda5a 7576d10 b73d81d cd0d6f2 5bbee66 6e8c2ef 4d701c0 eddda5a e213266 7576d10 6454b14 8353801 cd0d6f2 8353801 02cdb95 021ea63 5636b5c 588ce8d 8353801 cd0d6f2 5636b5c f3a075d 02cdb95 690e199 b3cb6e3 021ea63 588ce8d b3cb6e3 690e199 3e8b98f 690e199 3e8b98f 690e199 3e8b98f b3cb6e3 3e8b98f 690e199 6454b14 021ea63 6454b14 5636b5c 6454b14 5636b5c 6454b14 5636b5c 6454b14 5636b5c 6454b14 690e199 6454b14 3e8b98f 588ce8d 037f9a9 588ce8d b3cb6e3 3e8b98f 690e199 b3cb6e3 3e8b98f 690e199 3e8b98f 690e199 3e8b98f 690e199 588ce8d 3e8b98f 690e199 6454b14 5636b5c 6454b14 690e199 5636b5c 588ce8d 690e199 6454b14 169c8af 690e199 b3cb6e3 6454b14 780307f 690e199 7576d10 4809f98 3e8b98f 4809f98 3e8b98f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import subprocess
import os
if os.getenv('SYSTEM') == 'spaces':
subprocess.call('pip install -U openmim'.split())
subprocess.call('pip install python-dotenv'.split())
subprocess.call('pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113'.split())
subprocess.call('mim install mmcv>=2.0.0'.split())
subprocess.call('mim install mmengine'.split())
subprocess.call('mim install mmdet'.split())
subprocess.call('pip install opencv-python-headless==4.5.5.64'.split())
subprocess.call('pip install git+https://github.com/cocodataset/panopticapi.git'.split())
import gradio as gr
from huggingface_hub import snapshot_download
import cv2
import dotenv
dotenv.load_dotenv()
import numpy as np
import gradio as gr
import glob
from inference import inference_frame,inference_frame_serial
from inference import inference_frame_par_ready
from inference import process_frame
from inference import classes
from inference import class_sizes_lower
from metrics import process_results_for_plot
from metrics import prediction_dashboard
import os
import pathlib
import multiprocessing as mp
from time import time
if not os.path.exists('videos_example') and not os.getenv('SYSTEM') == 'spaces':
REPO_ID='SharkSpace/videos_examples'
snapshot_download(repo_id=REPO_ID, token=os.environ.get('SHARK_MODEL'),repo_type='dataset',local_dir='videos_example')
theme = gr.themes.Soft(
primary_hue="sky",
neutral_hue="slate",
)
def add_border(frame, color = (255, 0, 0), thickness = 2):
# Add a red border to the image
relative = max(frame.shape[0],frame.shape[1])
top = int(relative*0.025)
bottom = int(relative*0.025)
left = int(relative*0.025)
right = int(relative*0.025)
# Add the border to the image
bordered_image = cv2.copyMakeBorder(frame, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
return bordered_image
def overlay_text_on_image(image, text_list, font=cv2.FONT_HERSHEY_SIMPLEX, font_size=0.5, font_thickness=1, margin=10, color=(255, 255, 255)):
relative = min(image.shape[0],image.shape[1])
y0, dy = margin, int(relative*0.1) # start y position and line gap
for i, line in enumerate(text_list):
y = y0 + i * dy
text_width, _ = cv2.getTextSize(line, font, font_size, font_thickness)[0]
cv2.putText(image, line, (image.shape[1] - text_width - margin, y), font, font_size, color, font_thickness, lineType=cv2.LINE_AA)
return image
def overlay_logo(frame,logo, position=(10, 10)):
"""
Overlay a transparent logo (with alpha channel) on a frame.
Parameters:
- frame: The main image/frame to overlay the logo on.
- logo_path: Path to the logo image.
- position: (x, y) tuple indicating where the logo starts (top left corner).
"""
# Load the logo and its alpha channel
alpha_channel = np.ones(logo.shape[:2], dtype=logo.dtype)
print(logo.min(),logo.max())
logo = np.dstack((logo, alpha_channel))
indexes = logo[:,:,1]>150
logo[indexes,3] = 0
l_channels = cv2.split(logo)
if len(l_channels) != 4:
raise ValueError("Logo doesn't have an alpha channel!")
l_b, l_g, l_r, l_alpha = l_channels
cv2.imwrite('l_alpha.png',l_alpha*255)
# Extract regions of interest (ROI) from both images
roi = frame[position[1]:position[1]+logo.shape[0], position[0]:position[0]+logo.shape[1]]
# Blend the logo using the alpha channel
for channel in range(0, 3):
roi[:, :, channel] = (l_alpha ) * l_channels[channel] + (1.0 - l_alpha ) * roi[:, :, channel]
return frame
def add_danger_symbol_from_image(frame, top_pred):
relative = max(frame.shape[0],frame.shape[1])
if top_pred['shark_sighted'] and top_pred['dangerous_dist']:
# Add the danger symbol
danger_symbol = cv2.imread('static/danger_symbol.jpeg')
danger_symbol = cv2.resize(danger_symbol, (int(relative*0.1), int(relative*0.1)), interpolation = cv2.INTER_AREA)[:,:,::-1]
frame = overlay_logo(frame,danger_symbol, position=(int(relative*0.05), int(relative*0.05)))
return frame
def draw_cockpit(frame, top_pred,cnt):
# Bullet points:
high_danger_color = (255,0,0)
low_danger_color = yellowgreen = (154,205,50)
shark_sighted = 'Shark Detected: ' + str(top_pred['shark_sighted'])
human_sighted = 'Number of Humans: ' + str(top_pred['human_n'])
shark_size_estimate = 'Biggest shark size: ' + str(top_pred['biggest_shark_size'])
shark_weight_estimate = 'Biggest shark weight: ' + str(top_pred['biggest_shark_weight'])
danger_level = 'Danger Level: '
danger_level += 'High' if top_pred['dangerous_dist'] else 'Low'
danger_color = 'orangered' if top_pred['dangerous_dist'] else 'yellowgreen'
# Create a list of strings to plot
strings = [shark_sighted, human_sighted, shark_size_estimate, shark_weight_estimate, danger_level]
relative = max(frame.shape[0],frame.shape[1])
if top_pred['shark_sighted'] and top_pred['dangerous_dist'] and cnt%2 == 0:
frame = add_border(frame, color=high_danger_color, thickness=int(relative*0.025))
frame = add_danger_symbol_from_image(frame, top_pred)
elif top_pred['shark_sighted'] and not top_pred['dangerous_dist'] and cnt%2 == 0:
frame = add_border(frame, color=low_danger_color, thickness=int(relative*0.025))
frame = add_danger_symbol_from_image(frame, top_pred)
else:
frame = add_border(frame, color=(0,0,0), thickness=int(relative*0.025))
overlay_text_on_image(frame, strings, font=cv2.FONT_HERSHEY_SIMPLEX, font_size=relative*0.0007, font_thickness=1, margin=int(relative*0.05), color=(255, 255, 255))
return frame
def process_video(input_video,out_fps = 'auto', skip_frames = 7):
cap = cv2.VideoCapture(input_video)
output_path = "output.mp4"
if out_fps != 'auto' and type(out_fps) == int:
fps = int(out_fps)
else:
fps = int(cap.get(cv2.CAP_PROP_FPS))
if out_fps == 'auto':
fps = int(fps / skip_frames)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
video = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))
iterating, frame = cap.read()
cnt = 0
while iterating:
print('overall count ', cnt)
if (cnt % skip_frames) == 0:
print('starting Frame: ', cnt)
# flip frame vertically
display_frame, result = inference_frame_serial(frame)
#print(result)
top_pred = process_results_for_plot(predictions = result.numpy(),
classes = classes,
class_sizes = class_sizes_lower)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
prediction_frame = cv2.cvtColor(display_frame, cv2.COLOR_BGR2RGB)
#frame = cv2.resize(frame, (int(width), int(height)))
video.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
if cnt*skip_frames %2==0 and top_pred['shark_sighted']:
prediction_frame = cv2.resize(prediction_frame, (int(width), int(height)))
frame =prediction_frame
if top_pred['shark_sighted']:
frame = draw_cockpit(frame, top_pred,cnt*skip_frames)
video.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
pred_dashbord = prediction_dashboard(top_pred = top_pred)
#print('sending frame')
print('finalizing frame:',cnt)
print(pred_dashbord.shape)
print(frame.shape)
print(prediction_frame.shape)
yield frame , None
cnt += 1
iterating, frame = cap.read()
video.release()
yield None, output_path
with gr.Blocks(theme=theme) as demo:
with gr.Row().style(equal_height=True):
input_video = gr.Video(label="Input")
original_frames = gr.Image(label="Processed Frame").style( height=650)
#processed_frames = gr.Image(label="Shark Engine")
output_video = gr.Video(label="Output Video")
#dashboard = gr.Image(label="Events")
with gr.Row():
paths = sorted(pathlib.Path('videos_example/').rglob('*.mp4'))
samples=[[path.as_posix()] for path in paths if 'raw_videos' in str(path)]
examples = gr.Examples(samples, inputs=input_video)
process_video_btn = gr.Button("Process Video")
#process_video_btn.click(process_video, input_video, [processed_frames, original_frames, output_video, dashboard])
process_video_btn.click(process_video, input_video, [ original_frames, output_video])
demo.queue()
if os.getenv('SYSTEM') == 'spaces':
demo.launch(width='40%',auth=(os.environ.get('SHARK_USERNAME'), os.environ.get('SHARK_PASSWORD')))
else:
demo.launch()
|