Spaces:
Runtime error
Runtime error
File size: 12,266 Bytes
cd0d6f2 6454b14 eddda5a a0fd402 b73d81d cd0d6f2 5bbee66 6e8c2ef 2c688c3 889a367 183ef48 e213266 7576d10 6454b14 8353801 cd0d6f2 8353801 02cdb95 021ea63 5636b5c 588ce8d 8353801 cd0d6f2 5636b5c f3a075d 02cdb95 555f068 b3cb6e3 021ea63 588ce8d b3cb6e3 7cb6b0b 5a6bfe3 7cb6b0b b3cb6e3 7cb6b0b 5a6bfe3 7cb6b0b afeb582 7cb6b0b afeb582 b3cb6e3 7cb6b0b 690e199 3e8b98f afeb582 3e8b98f afeb582 3e8b98f 3161a87 afeb582 3e8b98f afeb582 5a6bfe3 690e199 afeb582 5a6bfe3 690e199 3e8b98f b3cb6e3 3e8b98f f1635ae 7b5103c b1c2f87 021ea63 6454b14 5636b5c 6454b14 7b5103c b265a61 7b5103c 5636b5c 6454b14 5636b5c 6454b14 2098c98 6454b14 690e199 6454b14 2098c98 7b5103c 3e8b98f 3a45e37 d081c3f 3a45e37 690e199 2098c98 690e199 afeb582 3a45e37 f47844c afeb582 f47844c 690e199 588ce8d 2098c98 588ce8d 3e8b98f afeb582 3161a87 690e199 6454b14 5636b5c 6454b14 3161a87 5636b5c 588ce8d 5a6bfe3 a0fd402 3161a87 a0fd402 6454b14 780307f 690e199 3161a87 7576d10 4809f98 3e8b98f 4809f98 d0ad6b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import subprocess
import os
if os.getenv('SYSTEM') == 'spaces':
subprocess.call('pip install gradio==4.29.0'.split())
subprocess.call('pip install -U openmim'.split())
subprocess.call('pip install python-dotenv'.split())
subprocess.call('pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113'.split())
subprocess.call('mim install mmcv>=2.0.0'.split())
subprocess.call('mim install mmengine==0.7.2'.split())
subprocess.call('mim install mmdet==3.0.0'.split())
subprocess.call('pip install opencv-python'.split())
subprocess.call('pip install git+https://github.com/cocodataset/panopticapi.git'.split())
import gradio as gr
from huggingface_hub import snapshot_download
import cv2
import dotenv
dotenv.load_dotenv()
import numpy as np
import gradio as gr
import glob
from inference import inference_frame,inference_frame_serial
from inference import inference_frame_par_ready
from inference import process_frame
from inference import classes
from inference import class_sizes_lower
from metrics import process_results_for_plot
from metrics import prediction_dashboard
import os
import pathlib
import multiprocessing as mp
from time import time
if not os.path.exists('videos_example'):
REPO_ID='SharkSpace/videos_examples'
snapshot_download(repo_id=REPO_ID, token=os.environ.get('SHARK_MODEL'),repo_type='dataset',local_dir='videos_example')
theme = gr.themes.Soft(
primary_hue="sky",
neutral_hue="slate",
)
def add_border(frame, color = (255, 0, 0), thickness = 2):
# Add a red border to the image
relative = max(frame.shape[0],frame.shape[1])
top = int(relative*0.025)
bottom = int(relative*0.025)
left = int(relative*0.025)
right = int(relative*0.025)
# Add the border to the image
bordered_image = cv2.copyMakeBorder(frame, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
return bordered_image
def overlay_text_on_image(image, text_list, font=cv2.FONT_HERSHEY_SIMPLEX, font_size=0.5, font_thickness=1, margin=10, color=(255, 255, 255), box_color=(0,0,0)):
relative = min(image.shape[0], image.shape[1])
y0, dy = margin, int(relative*0.1) # start y position and line gap
for i, line in enumerate(text_list):
y = y0 + i * dy
if 'Shark' in line or 'Human' in line:
current_font_size = font_size * 1.2
text_width, text_height = cv2.getTextSize(line, font, current_font_size, font_thickness)[0]
cv2.rectangle(image, (image.shape[1] - text_width - margin - 5, y - text_height), (image.shape[1] - margin + 5, y + 5), box_color, -1)
cv2.putText(image, line, (image.shape[1] - text_width - margin, y), font, current_font_size, color, font_thickness, lineType=cv2.LINE_AA)
else:
current_font_size = font_size
text_width, text_height = cv2.getTextSize(line, font, current_font_size, font_thickness)[0]
cv2.rectangle(image, (image.shape[1] - text_width - margin - 5, y - text_height), (image.shape[1] - margin + 5, y + 5), box_color, -1)
cv2.putText(image, line, (image.shape[1] - text_width - margin, y), font, current_font_size, color, font_thickness, lineType=cv2.LINE_AA)
return image
def overlay_logo(frame,logo, position=(10, 10)):
"""
Overlay a transparent logo (with alpha channel) on a frame.
Parameters:
- frame: The main image/frame to overlay the logo on.
- logo_path: Path to the logo image.
- position: (x, y) tuple indicating where the logo starts (top left corner).
"""
# Load the logo and its alpha channel
alpha_channel = np.ones(logo.shape[:2], dtype=logo.dtype)
print(logo.min(),logo.max())
logo = np.dstack((logo, alpha_channel))
indexes = logo[:,:,1]>150
logo[indexes,3] = 0
l_channels = cv2.split(logo)
if len(l_channels) != 4:
raise ValueError("Logo doesn't have an alpha channel!")
l_b, l_g, l_r, l_alpha = l_channels
cv2.imwrite('l_alpha.png',l_alpha*255)
# Extract regions of interest (ROI) from both images
roi = frame[position[1]:position[1]+logo.shape[0], position[0]:position[0]+logo.shape[1]]
# Blend the logo using the alpha channel
for channel in range(0, 3):
roi[:, :, channel] = (l_alpha ) * l_channels[channel] + (1.0 - l_alpha ) * roi[:, :, channel]
return frame
def add_danger_symbol_from_image(frame, top_pred):
relative = max(frame.shape[0],frame.shape[1])
if top_pred['shark_sighted'] and top_pred['dangerous_dist']:
# Add the danger symbol
danger_symbol = cv2.imread('static/danger_symbol.jpeg')
danger_symbol = cv2.resize(danger_symbol, (int(relative*0.1), int(relative*0.1)), interpolation = cv2.INTER_AREA)[:,:,::-1]
frame = overlay_logo(frame,danger_symbol, position=(int(relative*0.05), int(relative*0.05)))
return frame
def draw_cockpit(frame, top_pred,cnt):
# Bullet points:
high_danger_color = (255,0,0)
low_danger_color = yellowgreen = (154,205,50)
if top_pred['shark_sighted'] > 0:
shark_suspected = 'Shark Sighted !'
elif top_pred['shark_suspected'] > 0:
shark_suspected = 'Shark Suspected !'
else:
shark_suspected = 'No Sharks ...'
if top_pred['human_sighted'] > 0:
human_suspected = 'Human Sighted !'
elif top_pred['human_suspected'] > 0:
human_suspected = 'Human Suspected !'
else:
human_suspected = 'No Humans ...'
shark_size_estimate = 'Biggest shark size: ' + str(top_pred['biggest_shark_size']) if top_pred['biggest_shark_size'] else 'Biggest shark size: ...'
shark_weight_estimate = 'Biggest shark weight: ' + str(top_pred['biggest_shark_weight']) if top_pred['biggest_shark_weight'] else 'Biggest shark weight: ...'
danger_level = 'Danger Level: '
danger_level += 'High' if top_pred['dangerous_dist_confirmed'] else 'Low'
danger_color = 'orangered' if top_pred['dangerous_dist_confirmed'] else 'yellowgreen'
# Create a list of strings to plot
strings = [shark_suspected, human_suspected, shark_size_estimate, danger_level]
# shark_sighted = 'Shark Detected: ' + str(top_pred['shark_sighted'])
# human_sighted = 'Number of Humans: ' + str(top_pred['human_n'])
# shark_size_estimate = 'Biggest shark size: ' + str(top_pred['biggest_shark_size'])
# shark_weight_estimate = 'Biggest shark weight: ' + str(top_pred['biggest_shark_weight'])
# danger_level = 'Danger Level: '
# danger_level += 'High' if top_pred['dangerous_dist'] else 'Low'
# danger_color = 'orangered' if top_pred['dangerous_dist'] else 'yellowgreen'
# # Create a list of strings to plot
# strings = [shark_sighted, human_sighted, shark_size_estimate, shark_weight_estimate, danger_level]
relative = max(frame.shape[0],frame.shape[1])
if top_pred['shark_sighted'] and top_pred['dangerous_dist_confirmed'] and cnt%2 == 0:
#frame = add_border(frame, color=high_danger_color, thickness=int(relative*0.025))
frame = add_danger_symbol_from_image(frame, top_pred)
elif top_pred['shark_sighted'] and not top_pred['dangerous_dist_confirmed'] and cnt%2 == 0:
#frame = add_border(frame, color=low_danger_color, thickness=int(relative*0.025))
frame = add_danger_symbol_from_image(frame, top_pred)
else:
frame = add_border(frame, color=(0,0,0), thickness=int(relative*0.025))
overlay_text_on_image(frame, strings, font=cv2.FONT_HERSHEY_SIMPLEX, font_size=relative*0.0007, font_thickness=1, margin=int(relative*0.05), color=(255, 255, 255))
return frame
def process_video(input_video, out_fps = 'auto', skip_frames = 12):
print('Processing video: ')
try:
cap = cv2.VideoCapture(input_video.name)
except:
cap = cv2.VideoCapture(input_video)
output_path = "output.mp4"
if out_fps != 'auto' and type(out_fps) == int:
fps = int(out_fps)
else:
fps = int(cap.get(cv2.CAP_PROP_FPS))
if out_fps == 'auto':
fps = int(fps / skip_frames)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
if width > 2200 or height > 2000:
width = int(width//4)
height = int(height//4)
video = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))
iterating, frame = cap.read()
cnt = 0
drawn_count = 0
last_5_shark_detected = np.array([0, 0, 0, 0, 0])
last_5_human_detected = np.array([0, 0, 0, 0, 0])
last_5_dangerous_dist = np.array([0, 0, 0, 0, 0])
while iterating:
print('overall count ', cnt)
if (cnt % skip_frames) == 0:
drawn_count += 1
frame = cv2.resize(frame, (int(width), int(height)))
print('starting Frame: ', cnt)
# flip frame vertically
display_frame, result = inference_frame_serial(frame)
#print(result)
top_pred = process_results_for_plot(predictions = result.numpy(),
classes = classes,
class_sizes = class_sizes_lower)
# add to last 5
last_5_shark_detected[drawn_count % 5] = int(top_pred['shark_n'] > 0)
last_5_human_detected[drawn_count % 5] = int(top_pred['human_n'] > 0)
last_5_dangerous_dist[drawn_count % 5] = int(top_pred['dangerous_dist'] > 0)
top_pred['shark_sighted'] = int(np.sum(last_5_shark_detected) > 3)
top_pred['human_sighted'] = int(np.sum(last_5_human_detected) > 3)
top_pred['dangerous_dist_confirmed'] = int(np.sum(last_5_dangerous_dist) > 3)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
prediction_frame = cv2.cvtColor(display_frame, cv2.COLOR_BGR2RGB)
#
#video.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
if cnt*skip_frames %2==0:
prediction_frame = cv2.resize(prediction_frame, (int(width), int(height)))
frame = prediction_frame
#if top_pred['shark_sighted'] or top_pred['shark_suspected']:
frame = draw_cockpit(frame, top_pred,cnt*skip_frames)
frame = cv2.resize(frame, (int(width), int(height)))
video.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
pred_dashbord = prediction_dashboard(top_pred = top_pred)
drawn_count += 1
#print('sending frame')
print('finalizing frame:',cnt)
#print(pred_dashbord.shape)
#print(frame.shape)
#print(prediction_frame.shape)
#print(width, height)
yield frame
cnt += 1
iterating, frame = cap.read()
video.release()
yield None
with gr.Blocks(theme=theme) as demo:
gr.Markdown("Alpha Demo of the Sharkpatrol Oceanlife Detector.")
with gr.Row():
input_video = gr.File(label="Input",height=50)
#output_video = gr.File(label="Output Video",height=50)
#.style(equal_height=True,height='25%'):
original_frames = gr.Image(label="Processed Frame") #.style( height=650)
#processed_frames = gr.Image(label="Shark Engine")
#dashboard = gr.Image(label="Events")
with gr.Row():
paths = sorted(pathlib.Path('videos_example/').rglob('*.mp4'))
samples=[[path.as_posix()] for path in paths if 'raw_videos' in str(path)]
examples = gr.Examples(samples, inputs=input_video)
process_video_btn = gr.Button("Process Video")
#process_video_btn.click(process_video, input_video, [processed_frames, original_frames, output_video, dashboard])
process_video_btn.click(process_video, input_video, [ original_frames])
demo.queue()
if os.getenv('SYSTEM') == 'spaces':
demo.launch(width='40%',auth=(os.environ.get('SHARK_USERNAME'), os.environ.get('SHARK_PASSWORD')))
else:
demo.launch(debug=True,share=True)
|