Spaces:
Runtime error
Runtime error
File size: 12,362 Bytes
7d88a24 579282f fd10b6c 579282f 39dff4c 28b69ba 579282f 7dc22ca c5fff41 7dc22ca f86940b 7dc22ca f86940b 7bd7744 af23861 7bd7744 b67fe1a 7dc22ca 9e3ca3b 7dc22ca b67fe1a 7dc22ca b67fe1a fd10b6c ff4e34f 4ffa9cc ff4e34f c6ddc86 3661992 28b69ba 4854a72 176b9ce 4854a72 176b9ce d354d71 32cbfb2 176b9ce d50b1d6 176b9ce 4854a72 176b9ce d354d71 32cbfb2 176b9ce 4854a72 bb31795 176b9ce 4854a72 176b9ce 4854a72 176b9ce 4854a72 f2e5be8 6b796ae f2e5be8 6b796ae f2e5be8 6b796ae f2e5be8 6b796ae f2e5be8 6b796ae f2e5be8 3516f35 f2e5be8 ff4e34f d2a1bab ff4e34f 7bd7744 25734b6 7271277 ff4e34f 7271277 ff4e34f 68403cb ff4e34f 70b2149 8e01d2c b96a4dc ff4e34f 68403cb 4a33601 271cd5a 5a30e79 3e4680c 5a30e79 6ab9b9b 3a23947 3fc518e 3a23947 98c0e59 3a23947 68403cb 1d48332 68403cb f2e5be8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
# Welcome to Team Tonic's MultiMed
import os
import numpy as np
import base64
import torch
import torchaudio
import gradio as gr
import requests
import json
import dotenv
from transformers import AutoProcessor, SeamlessM4TModel
import torchaudio
dotenv.load_dotenv()
from gradio_client import Client
client = Client("https://facebook-seamless-m4t.hf.space/--replicas/frq8b/")
AUDIO_SAMPLE_RATE = 16000.0
MAX_INPUT_AUDIO_LENGTH = 60 # in seconds
DEFAULT_TARGET_LANGUAGE = "English"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
from lang_list import (
LANGUAGE_NAME_TO_CODE,
S2ST_TARGET_LANGUAGE_NAMES,
S2TT_TARGET_LANGUAGE_NAMES,
T2TT_TARGET_LANGUAGE_NAMES,
TEXT_SOURCE_LANGUAGE_NAMES,
LANG_TO_SPKR_ID,
)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#processor = AutoProcessor.from_pretrained("ylacombe/hf-seamless-m4t-large")
#model = SeamlessM4TModel.from_pretrained("ylacombe/hf-seamless-m4t-large").to(device)
def process_speech(sound):
"""
processing sound using seamless_m4t
"""
# task_name = "T2TT"
result = client.predict(task_name="S2TT (Speech to Text translation)",
audio_source="microphone",
input_audio_mic=sound,
input_audio_file=None,
input_text=None,
source_language=None,
target_language="English")
print(result)
return result[1]
def process_speech_using_model(sound):
"""
processing sound using seamless_m4t
"""
# task_name = "T2TT"
arr, org_sr = torchaudio.load(sound)
target_language_code = LANGUAGE_NAME_TO_CODE[DEFAULT_TARGET_LANGUAGE]
new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
if new_arr.shape[1] > max_length:
new_arr = new_arr[:, :max_length]
gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.")
input_data = processor(audios = new_arr, sampling_rate=AUDIO_SAMPLE_RATE, return_tensors="pt").to(device)
tokens_ids = model.generate(**input_data, generate_speech=False, tgt_lang=target_language_code, num_beams=5, do_sample=True)[0].cpu().squeeze().detach().tolist()
text_out = processor.decode(tokens_ids, skip_special_tokens=True)
return text_out
def convert_image_to_required_format(image):
"""
convert image from numpy to base64
"""
if type(image) == type(np.array([])):
return base64.b64encode(image).decode('utf-8')
def process_image_with_openai(image):
image_data = convert_image_to_required_format(image)
openai_api_key = os.getenv('OPENAI_API_KEY')
if openai_api_key is None:
raise Exception("OPENAI_API_KEY not found in environment variables")
data_payload = {
"model": "gpt-4-vision-preview",
"messages": [
{
"role": "user",
"content": image_data
}
],
"max_tokens": 300
}
response = requests.post(
"https://api.openai.com/v1/chat/completions",
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}"
},
json=data_payload
)
if response.status_code == 200:
return response.json()['choices'][0]['message']['content']
else:
raise Exception(f"OpenAI Error: {response.status_code}")
def query_vectara(text):
user_message = text
# Read authentication parameters from the .env file
CUSTOMER_ID = os.getenv('CUSTOMER_ID')
CORPUS_ID = os.getenv('CORPUS_ID')
API_KEY = os.getenv('API_KEY')
# Define the headers
api_key_header = {
"customer-id": CUSTOMER_ID,
"x-api-key": API_KEY
}
# Define the request body in the structure provided in the example
request_body = {
"query": [
{
"query": user_message,
"queryContext": "",
"start": 1,
"numResults": 50,
"contextConfig": {
"charsBefore": 0,
"charsAfter": 0,
"sentencesBefore": 2,
"sentencesAfter": 2,
"startTag": "%START_SNIPPET%",
"endTag": "%END_SNIPPET%",
},
"rerankingConfig": {
"rerankerId": 272725718,
"mmrConfig": {
"diversityBias": 0.35
}
},
"corpusKey": [
{
"customerId": CUSTOMER_ID,
"corpusId": CORPUS_ID,
"semantics": 0,
"metadataFilter": "",
"lexicalInterpolationConfig": {
"lambda": 0
},
"dim": []
}
],
"summary": [
{
"maxSummarizedResults": 5,
"responseLang": "auto",
"summarizerPromptName": "vectara-summary-ext-v1.2.0"
}
]
}
]
}
# Make the API request using Gradio
response = requests.post(
"https://api.vectara.io/v1/query",
json=request_body, # Use json to automatically serialize the request body
verify=True,
headers=api_key_header
)
if response.status_code == 200:
query_data = response.json()
if query_data:
sources_info = []
# Extract the summary.
summary = query_data['responseSet'][0]['summary'][0]['text']
# Iterate over all response sets
for response_set in query_data.get('responseSet', []):
# Extract sources
for source in response_set.get('response', [])[:5]: # Limit to top 5 sources.
source_metadata = source.get('metadata', [])
source_info = {}
for metadata in source_metadata:
metadata_name = metadata.get('name', '')
metadata_value = metadata.get('value', '')
if metadata_name == 'title':
source_info['title'] = metadata_value
elif metadata_name == 'author':
source_info['author'] = metadata_value
elif metadata_name == 'pageNumber':
source_info['page number'] = metadata_value
if source_info:
sources_info.append(source_info)
result = {"summary": summary, "sources": sources_info}
return f"{json.dumps(result, indent=2)}"
else:
return "No data found in the response."
else:
return f"Error: {response.status_code}"
def convert_to_markdown(vectara_response_json):
vectara_response = json.loads(vectara_response_json)
if vectara_response:
summary = vectara_response.get('summary', 'No summary available')
sources_info = vectara_response.get('sources', [])
# Format the summary as Markdown
markdown_summary = f'**Summary:** {summary}\n\n'
# Format the sources as a numbered list
markdown_sources = ""
for i, source_info in enumerate(sources_info):
author = source_info.get('author', 'Unknown author')
title = source_info.get('title', 'Unknown title')
page_number = source_info.get('page number', 'Unknown page number')
markdown_sources += f"{i+1}. {title} by {author}, Page {page_number}\n"
return f"{markdown_summary}**Sources:**\n{markdown_sources}"
else:
return "No data found in the response."
# Main function to handle the Gradio interface logic
def process_and_query(text, image,audio):
try:
# If an image is provided, process it with OpenAI and use the response as the text query for Vectara
if image is not None:
text = process_image_with_openai(image)
if audio is not None:
# audio = audio[0].numpy()
# audio = audio.astype(np.float32)
# audio = audio / np.max(np.abs(audio))
# audio = audio * 32768
# audio = audio.astype(np.int16)
# audio = audio.tobytes()
# audio = base64.b64encode(audio).decode('utf-8')
text = process_speech(audio)
print(text)
# Now, use the text (either provided by the user or obtained from OpenAI) to query Vectara
vectara_response_json = query_vectara(text)
markdown_output = convert_to_markdown(vectara_response_json)
return markdown_output + text
except Exception as e:
return str(e)
# Define the Gradio interface
iface = gr.Interface(
fn=process_and_query,
inputs=[
gr.Textbox(label="Input Text"),
gr.Image(label="Upload Image"),
gr.Audio(label="talk", type="filepath", sources="microphone", visible=True),
],
outputs=[gr.Markdown(label="Output Text")],
title="👋🏻Welcome to ⚕🗣️😷MultiMed - Access Chat ⚕🗣️😷",
description = '''
### How To Use ⚕🗣️😷MultiMed⚕:
#### 🗣️📝Interact with ⚕🗣️😷MultiMed⚕ in any language using audio or text!
#### 🗣️📝 This is an educational and accessible conversational tool to improve wellness and sanitation in support of public health.
#### 📚🌟💼 The knowledge base is composed of publicly available medical and health sources in multiple languages. We also used [Kelvalya/MedAware](https://huggingface.co/datasets/keivalya/MedQuad-MedicalQnADataset) that we processed and converted to HTML. The quality of the answers depends on the quality of the dataset, so if you want to see some data represented here, do [get in touch](https://discord.gg/GWpVpekp). You can also use 😷MultiMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/TeamTonic/MultiMed?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
#### Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)"
''',
theme='ParityError/Anime',
examples=[
["What is the proper treatment for buccal herpes?"],
["Male, 40 presenting with swollen glands and a rash"],
["How does cellular metabolism work TCA cycle"],
["What special care must be provided to children with chicken pox?"],
["When and how often should I wash my hands ?"],
["بکل ہرپس کا صحیح علاج کیا ہے؟"],
["구강 헤르페스의 적절한 치료법은 무엇입니까?"],
["Je, ni matibabu gani sahihi kwa herpes ya buccal?"],
],
)
iface.launch() |