Spaces:
Runtime error
Runtime error
File size: 19,576 Bytes
7d88a24 be980dd 722ecec 579282f fd10b6c 39dff4c 5f79091 39dff4c 28b69ba be980dd adc6d8b d22abe6 3eb706b ad65b09 f6b7e7f eae970b ecc69e5 eae970b ad65b09 0f4cece 7dc22ca 56811e2 a31fde9 fa57d02 91f8c28 7dc22ca a31fde9 abe552f a31fde9 9bda859 f86940b 215f2d8 874e011 215f2d8 874e011 215f2d8 7bd7744 11abe35 7dc22ca c540f1a c1f218b 74f3ed7 be980dd c1f218b be980dd 219ee2d 712a316 be980dd 52bb2a3 be980dd fddbec9 415223e 17b13ec 415223e 17b13ec 415223e fc4944e 415223e ff4e34f 415223e ff4e34f c6ddc86 3661992 28b69ba 4854a72 176b9ce 4854a72 176b9ce d354d71 d1b23d4 176b9ce d50b1d6 176b9ce 4854a72 176b9ce d354d71 32cbfb2 176b9ce 4854a72 bb31795 176b9ce 4854a72 176b9ce 4854a72 176b9ce 4854a72 f2e5be8 722ecec eae970b 5c14e87 eae970b 23e856e eae970b 23e856e eae970b 41cbd00 9bda859 8de78b2 8586313 848d882 2f101a3 848d882 be0a295 9c31a8e be0a295 6de3447 663551b b8d5b3e 751b072 fddbec9 f38c30e 751b072 2f101a3 9bda859 2f101a3 b8d5b3e 252dd70 6de3447 415223e d456b20 57f52ca 25b2322 6de3447 25b2322 6de3447 25b2322 b510b99 2f101a3 0b6ead0 25b2322 5c14e87 9bda859 0b6ead0 8eb3297 215f2d8 0b6ead0 5c14e87 52b04b8 57f52ca c03a440 57f52ca 5c14e87 215f2d8 41cbd00 e8d566d a1b9406 eae970b a1b9406 e8d566d a1b9406 eae970b a1b9406 eae970b e8d566d 6dbdc81 4f201ed b32ad38 0b077bd eb0e999 5c4ba8b 206f02e c797359 80d8737 d2609b3 53ded4b d2609b3 c797359 81be9c7 9bda859 dac51d0 c797359 732e3f7 9bda859 c9c32e4 c797359 d2609b3 9bda859 206f02e 58cf17b dac51d0 80d8737 fa97b6d 80d8737 9db4018 c797359 d2609b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 |
# Welcome to Team Tonic's MultiMed
from gradio_client import Client
import os
import numpy as np
import base64
import gradio as gr
import tempfile
import requests
import json
import dotenv
from scipy.io.wavfile import write
import PIL
from openai import OpenAI
import time
from PIL import Image
import io
import hashlib
import datetime
from utils import build_logger
from transformers import AutoTokenizer, MistralForCausalLM
import torch
import random
from textwrap import wrap
import transformers
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
from peft import PeftModel, PeftConfig
import torch
import os
# Global variables to hold component references
components = {}
dotenv.load_dotenv()
seamless_client = Client("facebook/seamless_m4t")
HuggingFace_Token = os.getenv("HuggingFace_Token")
hf_token = os.getenv("HuggingFace_Token")
base_model_id = os.getenv('BASE_MODEL_ID', 'default_base_model_id')
model_directory = os.getenv('MODEL_DIRECTORY', 'default_model_directory')
device = "cuda" if torch.cuda.is_available() else "cpu"
def check_hallucination(assertion,citation):
API_URL = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"
headers = {"Authorization": f"Bearer {HuggingFace_Token}"}
payload = {"inputs" : f"{assertion} [SEP] {citation}"}
response = requests.post(API_URL, headers=headers, json=payload,timeout=120)
output = response.json()
output = output[0][0]["score"]
return f"**hallucination score:** {output}"
# Define the API parameters
VAPI_URL = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"
headers = {"Authorization": f"Bearer {HuggingFace_Token}"}
# Function to query the API
def query(payload):
response = requests.post(VAPI_URL, headers=headers, json=payload)
return response.json()
# Function to evaluate hallucination
def evaluate_hallucination(input1, input2):
# Combine the inputs
combined_input = f"{input1}. {input2}"
# Make the API call
output = query({"inputs": combined_input})
# Extract the score from the output
score = output[0][0]['score']
# Generate a label based on the score
if score < 0.5:
label = f"🔴 High risk. Score: {score:.2f}"
else:
label = f"🟢 Low risk. Score: {score:.2f}"
return label
def process_speech(input_language, audio_input):
"""
processing sound using seamless_m4t
"""
if audio_input is None :
return "no audio or audio did not save yet \nplease try again ! "
print(f"audio : {audio_input}")
print(f"audio type : {type(audio_input)}")
out = seamless_client.predict(
"S2TT",
"file",
None,
audio_input, #audio_name
"",
input_language,# source language
"English",# target language
api_name="/run",
)
out = out[1] # get the text
try :
return f"{out}"
except Exception as e :
return f"{e}"
def save_image(image_input, output_dir="saved_images"):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Generate a unique file name
file_name = f"image_{int(time.time())}.png"
file_path = os.path.join(output_dir, file_name)
# Check the type of image_input and handle accordingly
if isinstance(image_input, np.ndarray): # If image_input is a NumPy array
Image.fromarray(image_input).save(file_path)
elif isinstance(image_input, Image.Image): # If image_input is a PIL image
image_input.save(file_path)
elif isinstance(image_input, str) and image_input.startswith('data:image'): # If image_input is a base64 string
image_data = base64.b64decode(image_input.split(',')[1])
with open(file_path, 'wb') as f:
f.write(image_data)
else:
raise ValueError("Unsupported image format")
return file_path
def process_image(image_input):
# Initialize the Gradio client with the URL of the Gradio server
client = Client("https://adept-fuyu-8b-demo.hf.space/--replicas/pqjvl/")
# Assuming image_input is a URL path to the image
image_path = image_input
# Call the predict method of the client
result = client.predict(
image_path, # URL of the image
True, # Additional parameter for the server (e.g., enable detailed captioning)
fn_index=2
)
return result
def query_vectara(text):
user_message = text
# Read authentication parameters from the .env file
CUSTOMER_ID = os.getenv('CUSTOMER_ID')
CORPUS_ID = os.getenv('CORPUS_ID')
API_KEY = os.getenv('API_KEY')
# Define the headers
api_key_header = {
"customer-id": CUSTOMER_ID,
"x-api-key": API_KEY
}
# Define the request body in the structure provided in the example
request_body = {
"query": [
{
"query": user_message,
"queryContext": "",
"start": 1,
"numResults": 25,
"contextConfig": {
"charsBefore": 0,
"charsAfter": 0,
"sentencesBefore": 2,
"sentencesAfter": 2,
"startTag": "%START_SNIPPET%",
"endTag": "%END_SNIPPET%",
},
"rerankingConfig": {
"rerankerId": 272725718,
"mmrConfig": {
"diversityBias": 0.35
}
},
"corpusKey": [
{
"customerId": CUSTOMER_ID,
"corpusId": CORPUS_ID,
"semantics": 0,
"metadataFilter": "",
"lexicalInterpolationConfig": {
"lambda": 0
},
"dim": []
}
],
"summary": [
{
"maxSummarizedResults": 5,
"responseLang": "auto",
"summarizerPromptName": "vectara-summary-ext-v1.2.0"
}
]
}
]
}
# Make the API request using Gradio
response = requests.post(
"https://api.vectara.io/v1/query",
json=request_body, # Use json to automatically serialize the request body
verify=True,
headers=api_key_header
)
if response.status_code == 200:
query_data = response.json()
if query_data:
sources_info = []
# Extract the summary.
summary = query_data['responseSet'][0]['summary'][0]['text']
# Iterate over all response sets
for response_set in query_data.get('responseSet', []):
# Extract sources
# Limit to top 5 sources.
for source in response_set.get('response', [])[:5]:
source_metadata = source.get('metadata', [])
source_info = {}
for metadata in source_metadata:
metadata_name = metadata.get('name', '')
metadata_value = metadata.get('value', '')
if metadata_name == 'title':
source_info['title'] = metadata_value
elif metadata_name == 'author':
source_info['author'] = metadata_value
elif metadata_name == 'pageNumber':
source_info['page number'] = metadata_value
if source_info:
sources_info.append(source_info)
result = {"summary": summary, "sources": sources_info}
return f"{json.dumps(result, indent=2)}"
else:
return "No data found in the response."
else:
return f"Error: {response.status_code}"
# Functions to Wrap the Prompt Correctly
def wrap_text(text, width=90):
lines = text.split('\n')
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
wrapped_text = '\n'.join(wrapped_lines)
return wrapped_text
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
# Combine user input and system prompt
formatted_input = f"{user_input}{system_prompt}"
# Encode the input text
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
model_inputs = encodeds.to(device)
# Generate a response using the model
output = model.generate(
**model_inputs,
max_length=max_length,
use_cache=True,
early_stopping=True,
bos_token_id=model.config.bos_token_id,
eos_token_id=model.config.eos_token_id,
pad_token_id=model.config.eos_token_id,
temperature=0.1,
do_sample=True
)
# Decode the response
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
return response_text
# Instantiate the Tokenizer
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t", token=hf_token, trust_remote_code=True, padding_side="left")
# tokenizer = AutoTokenizer.from_pretrained("Tonic/stablemed", trust_remote_code=True, padding_side="left")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'left'
# Load the PEFT model
peft_config = PeftConfig.from_pretrained("Tonic/stablemed", token=hf_token)
peft_model = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t", token=hf_token, trust_remote_code=True)
peft_model = PeftModel.from_pretrained(peft_model, "Tonic/stablemed", token=hf_token)
class ChatBot:
def __init__(self):
self.history = []
def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
formatted_input = f"{system_prompt}{user_input}"
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
response = peft_model.generate(input_ids=user_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id)
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
return response_text
bot = ChatBot()
def process_summary_with_stablemed(summary):
system_prompt = "You are a medical instructor . Assess and describe the proper options to your students in minute detail. Propose a course of action for them to base their recommendations on based on your description."
response_text = bot.predict(summary, system_prompt)
return response_text
# Main function to handle the Gradio interface logic
def process_and_query(input_language=None, audio_input=None, image_input=None, text_input=None):
try:
# Initialize the conditional variables
combined_text = ""
image_description = ""
markdown_output = "" # Initialize markdown_output
image_text = "" # Initialize image_text
# Debugging print statement
print(f"Image Input Type: {type(image_input)}, Audio Input Type: {type(audio_input)}")
# Process image input
if image_input is not None:
# Convert image_input to a file path
image_file_path = save_image(image_input)
image_text = process_image(image_file_path)
combined_text += "\n\n**Image Input:**\n" + image_text
# Process audio input
elif audio_input is not None:
audio_text = process_speech(input_language, audio_input)
combined_text += "\n\n**Audio Input:**\n" + audio_text
# Process text input
elif text_input is not None and text_input.strip():
combined_text += "The user asks the following to his health adviser: " + text_input
# Check if combined text is empty
else:
return "Error: Please provide some input (text, audio, or image)."
# Append the original image description in Markdown
if image_text:
markdown_output += "\n### Original Image Description\n"
markdown_output += image_text + "\n"
# Use the text to query Vectara
vectara_response_json = query_vectara(combined_text)
# Parse the Vectara response
vectara_response = json.loads(vectara_response_json)
summary = vectara_response.get('summary', 'No summary available')
sources_info = vectara_response.get('sources', [])
# Format Vectara response in Markdown
markdown_output = "### Vectara Response Summary\n"
markdown_output += f"* **Summary**: {summary}\n"
markdown_output += "### Sources Information\n"
for source in sources_info:
markdown_output += f"* {source}\n"
# Process the summary with OpenAI
final_response = process_summary_with_stablemed(summary)
# Evaluate hallucination
hallucination_label = evaluate_hallucination(final_response, summary)
# Add final response and hallucination label to Markdown output
markdown_output += "\n### Processed Summary with StableMed\n"
markdown_output += final_response + "\n"
markdown_output += "\n### Hallucination Evaluation\n"
markdown_output += f"* **Label**: {hallucination_label}\n"
return markdown_output
except Exception as e:
return f"Error occurred during processing: {e}. No hallucination evaluation."
welcome_message = """
# 👋🏻Welcome to ⚕🗣️😷MultiMed - Access Chat ⚕🗣️😷
🗣️📝 This is an educational and accessible conversational tool.
### How To Use ⚕🗣️😷MultiMed⚕:
🗣️📝Interact with ⚕🗣️😷MultiMed⚕ in any language using image, audio or text!
📚🌟💼 that uses [Tonic/stablemed](https://huggingface.co/Tonic/stablemed) and [adept/fuyu-8B](https://huggingface.co/adept/fuyu-8b) with [Vectara](https://huggingface.co/vectara) embeddings + retrieval.
do [get in touch](https://discord.gg/GWpVpekp). You can also use 😷MultiMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/TeamTonic/MultiMed?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
### Join us :
🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)"
"""
languages = [
"Afrikaans",
"Amharic",
"Modern Standard Arabic",
"Moroccan Arabic",
"Egyptian Arabic",
"Assamese",
"Asturian",
"North Azerbaijani",
"Belarusian",
"Bengali",
"Bosnian",
"Bulgarian",
"Catalan",
"Cebuano",
"Czech",
"Central Kurdish",
"Mandarin Chinese",
"Welsh",
"Danish",
"German",
"Greek",
"English",
"Estonian",
"Basque",
"Finnish",
"French",
"West Central Oromo",
"Irish",
"Galician",
"Gujarati",
"Hebrew",
"Hindi",
"Croatian",
"Hungarian",
"Armenian",
"Igbo",
"Indonesian",
"Icelandic",
"Italian",
"Javanese",
"Japanese",
"Kamba",
"Kannada",
"Georgian",
"Kazakh",
"Kabuverdianu",
"Halh Mongolian",
"Khmer",
"Kyrgyz",
"Korean",
"Lao",
"Lithuanian",
"Luxembourgish",
"Ganda",
"Luo",
"Standard Latvian",
"Maithili",
"Malayalam",
"Marathi",
"Macedonian",
"Maltese",
"Meitei",
"Burmese",
"Dutch",
"Norwegian Nynorsk",
"Norwegian Bokmål",
"Nepali",
"Nyanja",
"Occitan",
"Odia",
"Punjabi",
"Southern Pashto",
"Western Persian",
"Polish",
"Portuguese",
"Romanian",
"Russian",
"Slovak",
"Slovenian",
"Shona",
"Sindhi",
"Somali",
"Spanish",
"Serbian",
"Swedish",
"Swahili",
"Tamil",
"Telugu",
"Tajik",
"Tagalog",
"Thai",
"Turkish",
"Ukrainian",
"Urdu",
"Northern Uzbek",
"Vietnamese",
"Xhosa",
"Yoruba",
"Cantonese",
"Colloquial Malay",
"Standard Malay",
"Zulu"
]
def clear():
# Return default values
return "English", None, None, "", "", "", ""
def create_interface():
with gr.Blocks(theme='ParityError/Anime') as iface:
# Display the welcome message
gr.Markdown(welcome_message)
# Add a 'None' or similar option to represent no selection
input_language_options = ["None"] + languages
input_language = gr.Dropdown(input_language_options, label="Select the language", value="English", interactive=True)
with gr.Accordion("Use Voice", open=False) as voice_accordion:
audio_input = gr.Audio(label="Speak")
audio_output = gr.Markdown(label="Output text") # Markdown component for audio
gr.Examples([["audio1.m4a"],["audio2.m4a"],],inputs=[input_language])
with gr.Accordion("Use a Picture", open=False) as picture_accordion:
image_input = gr.Image(label="Upload image")
image_output = gr.Markdown(label="Output text") # Markdown component for image
gr.Examples([["image1.png"], ["image2.jpeg"], ["image3.jpeg"],],inputs=[image_input])
with gr.Accordion("MultiMed", open=False) as multimend_accordion:
text_input = gr.Textbox(label="Use Text", lines=3, placeholder="I have had a sore throat and phlegm for a few days and now my cough has gotten worse!")
text_output = gr.Markdown(label="Output text") # Markdown component for text
text_button = gr.Button("Use MultiMed")
text_button.click(process_and_query, inputs=[input_language, audio_input, image_input, text_input], outputs=[text_output])
gr.Examples([
["What is the proper treatment for buccal herpes?"],
["Male, 40 presenting with swollen glands and a rash"],
["How does cellular metabolism work TCA cycle"],
["What special care must be provided to children with chicken pox?"],
["When and how often should I wash my hands?"],
["بکل ہرپس کا صحیح علاج کیا ہے؟"],
["구강 헤르페스의 적절한 치료법은 무엇입니까?"],
["Je, ni matibabu gani sahihi kwa herpes ya buccal?"],
],inputs=[text_input])
clear_button = gr.Button("Clear")
clear_button.click(clear, inputs=[], outputs=[input_language, audio_input, image_input, text_input])
return iface
iface = create_interface()
iface.launch(show_error=True, debug=True) |